
41Acta Chimica Slovaca, Vol. 13, No. 1, 2020, pp. 41—48, DOI: 10.2478/acs-2020-0007

Control of heat exchangers in series 
using neural network predictive controllers

Anna Vasičkaninová, Monika Bakošová, Alajos Mészáros

Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, 
Institute of Information Engineering, Automation and Mathematics, 

Radlinského 9, 812 37 Bratislava, Slovak Republic 
anna.vasickaninova@stuba.sk

Abstract: The paper reveals three applications of neural network predictive control (NNPC) to a system of 
four heat exchangers (HEs) in series with counterflow configuration to save energy expressed by cooling water 
in the system of HEs cooling the distillation product. Neural networks (NNs) are used at first in conventional 
NNPC and subsequently, neural network predictive controllers (NNPCLs) are employed as a master controller 
in a cascade control, and as a feedback controller in the control system with disturbance measurement. Neural-
network-predictive-control-based (NNPC-based) feedback control systems are compared with PI controller 
based feedback control loop. Series of simulation experiments were done and the results showed that using 
NNPC-based cascade control reduced cooling water consumption. This control system also significantly 
reduced the settling time and overshoots in the control responses and provided the best assessed integral 
quality criteria compared to other control systems. NNPC-based cascade control can also be interesting for 
industrial use. Generally, simulation results proved that NNPC-based control systems are promising means for 
the improvement of HEs control and achievement of energy saving.

Keywords: heat exchanger; neural network predictive control; neural-network-predictive-control-based cascade 
control; neural-network-predictive-control-based control system with disturbance measurement

Introduction

In contemporary industrial and technological 
world characterized by increasing energy demands 
and energy prices, energy consumption and clean 
energy utilization belong to the most important 
global challenges. Sustainability requirements on 
all production processes and especially on energy 
intensive processes are also intensified to save our 
planet for future generations. Industrial produc-
tion cannot do without HEs, which are used to ex-
change heat between media. Efficient heat recovery 
in an industrial plant is also a challenging task and 
one possibility is to combine HEs optimally in heat 
exchanger networks (HENs). Pashchenko (2020) 
published the calculation method for recovery rate 
as the main measure of heat recovery efficiency in 
a thermochemical waste-heat recuperation plant. 
Advanced control systems represent the other 
technical solution for efficient heat recovery. Mar-
kowski and Trzcinski (2019) introduced the HEN 
mathematical model and on-line control algorithm 
to maximize heat recovery.
From the viewpoint of heat, cold, vapor or elec- 
tricity production continuous improvement, HEs 
and HENs have become the midpoint of research 
and development. Saranya et al. (2017) modeled 
various types of heat exchangers, i.e., plate type 
HE, spiral type HE and shell and tube type HE. 
They also compared different model-based and 

non-model-based control systems and stated that 
NNs can act as controllers. Nemet et al. (2017) de-
signed HEN with improved safety during its whole 
lifetime. Secure HEN was obtained considering the 
risk in the early phase of the synthesis by including 
the changing failure frequency. Sun et al. (2018) 
investigated two different enhanced ejector heat 
exchangers and presented a configuration that 
optimizes exergy efficiency. Baruque et al. (2019) 
designed a heat exchanger as a part of a geothermal 
system and helped to regulate temperature by means 
of the developed prediction system. Thermally 
integrated preheater and heat exchanger network 
configurations were used by Yang et al. (2019) to 
save energy. The proposed method can be extended 
to other industrial processes that diminish energy 
spending and CO2 emissions. Elsisi (2019) proposed 
a new predictive control system for energy conver-
sion in a wind system. Controller parameters were 
tuned by a new intelligence technique called the 
crow search algorithm. Controller efficiency was 
confirmed in various situations with changes in the 
load requirements, wind speed, and the presence of 
system parameter uncertainties. Kim et al. (2009) 
presented an effective strategy to minimize the 
total annual cost of designing HE and wastewater 
networks. Cost estimates for optimized HE and 
wastewater networks in the oil refining process were 
assessed to illustrate the efficiency of the proposed 
strategy. Yang et al. (2016) introduced a systematic 
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and comprehensive comparative methodology that 
can be used to assess energy efficiency and energy 
saving potential of an energy-intensive chemical 
production system. The proposed approach was 
implemented to reduce energy consumption and to 
identify the most advanced energy use system.
Intensive research has been done in advanced 
control of various types and configurations of heat 
exchangers. Vasičkaninová and Bakošová (2015) 
successfully applied neural network and fuzzy 
system in a control system with the NNPC-based 
main and a fuzzy auxiliary controller to control a 
tubular HE. NNPC of tubular HEs in series with 
counter current configuration was introduced by 
Vasičkaninová et al. (2017), ensuring energy savings 
compared to PID control. Bakošová et al. (2017) 
compared NNPC, robust model-based predictive 
control (RMPC) and PID control in tubular HEs 
control, examined in set-point tracking. Simulation 
results proved better closed-loop control perfor-
mance and energy savings measured by hot water 
consumption for NNPC and RMPC over conven-
tional PID control. Oravec et al. (2018) designed 
RMPC with integral action and implemented this 
control strategy for shell-and-tube HEs with foul-
ing and proving considerable improvement in 
control performance and energy savings in contrast 
to conventional PID control.
This paper exceeds the paper by Vasičkaninová 
et al. (2019). The aim of the research represented 
by results in this paper is to show that NNPC-
based control systems are very attractive for HEs 
operation improvement as they provide higher 
energy efficiency, lower carbon footprint and 
cooling water savings. Especially water savings are 
very important for sustainable management of 
natural freshwater resources, for the protection 
of the aquatic environment and for meeting the 
current and future human needs.

Controlled process description

Optimal operation of HEs and HENs is one of the 
tools of energy saving in the process industry en-
suring the integration of heat between hot and cold 
process streams to reduce heat and cold consump-
tion during the heat exchange process.
Based on the previous work (Vasičkaninová et al., 
2017), four identical shell-and-tube HEs in series 

with counter current flow configuration create the 
controlled process (Fig. 1). Two main objectives of 
control are to decrease the temperature of kerosene 
in the outlet stream from the 4th HE to the reference 
temperature and to minimize the cooling water 
consumption.
A simplified nonlinear dynamic mathematical 
model of the HEs can take the form of eight first-
order differential equations (Oravec et al., 2016). 
Values of the parameters and steady-state inputs of 
HEs are given in Vasičkaninová et al. (2017).
Water is used as a coolant and flows in the shell of 
each HE, kerosene flows in the inner tubes. Tubes 
as well as shell are constructed of steel.
The first-principle nonlinear dynamic mathematical 
model of HEs (Fig. 1) reflecting the energy balances 
and heat transfer relations was derived in a simpli-
fied form and it contains eight first-order ordinary 
differential equations (Oravec et al., 2016). Four 
differential equations (1) describe the dynamics of 
cold fluid and the other four differential equations 
(2) represent the dynamics of hot fluid.
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In (1)—(3), subscripts 1  and 2  indicate the heated 
and the heating stream, respectively. Superscript 
j = 1, …, 4 denotes the heat exchanger. Temperatures 

1 1,0(0)j jT T= , 2 2,0(0)j jT T=  are the initial conditions, 
i.e. temperatures in a steady-state operation regime 
of the HEs and they can be calculated using the 
steady-state model of HEs represented by (1)—(3) 
with zero derivatives at the left-hand sides. Further, 
t is time, T is temperature, A is the heat transfer 
area, U is the overall heat transfer coefficient, V is 

Fig. 1. Shell-and-tube heat exchangers in series with counter current flow configuration.
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the volume of fluid in the HE, r is the density, cp is 
the specific heat capacity and q is the volumetric 
flow rate of the fluid (Vasičkaninová et al., 2017).

Basic concepts of NNPC

The scheme in Fig. 2 illustrates the predictive con-
trol based on the NN model. The neural network 
predictive controller contains an NN model and an 
optimization block. The controller predicts process 
output variables based on the values of NN model 
output variables while the optimization block calcu-
lates control inputs.
The controlled process can be nonlinear and 
affected by various uncertainties. In NNPC, it 
is important to obtain a process model based on 
NN which is trained based on a prediction error 
representing the difference between the measured 
process output and the predicted neural network 
output (Soloway and Haley, 1996).
The quadratic performance function (4) is mini-
mized to provide the optimum sequence of con-
trol inputs and only the first control input of the 
sequence is applied on the controlled nonlinear 
plant.
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Performance function parameters are: N1 — mini-
mum prediction horizon, N2  — maximum predic-
tion horizon and Nu — control horizon. Prediction 
horizons N1, N2 indicate the future time interval in 
which it is desirable to track the reference trajec-
tory r, k denotes discrete time, i is the order of the 
predictor, positive number l represents weight 
factor expressing the contribution of the control 
increments to the cost function, ym is the NN model 
output, and ∆u is the sequence of future control 
increments (Beale et al., 2015).

The above described NN predictive control 
structure uses a two-layer NN process model with 
sigmoid hidden-layer transfer functions and linear 
output-layer transfer functions. The network is 
usually trained off-line in batch mode using data 
gathered by measuring of the controlled process 
outputs. The Levenberg-Marquardt (LM) training 
algorithm for the NN model is commonly used 
(Lera and Pinzolas, 2002). Due to the convergence 
properties, the LM algorithm has become a widely 
adopted standard technique for nonlinear least-
squares problems. It iteratively searches a minimum 
of the sum of nonlinear function squares according 
to Eq. (5):

 1( ) ( 1) ( ) ( )T Tx k x k J J I J e km -= + + +  (5)

where I is the identity matrix, J denotes the Jaco-
bian matrix from the difference of error to the 
weight value, e denotes the control error and m is 
a damping parameter representing an adaptive 
balance between two steps. Both the success and 
the efficiency of the LM algorithm depend on the 
choice of parameter m.

Conventional control of heat exchangers 
in series with counter current flow 
arrangement

Conventional PI control
Four heat exchangers in series with counter cur-
rent flow configuration described in the previous 
section represent the controlled process. Kerosene 
temperature in the outlet stream from the 4th heat 
exchanger is the controlled output, and volumetric 
flow rate of cold water in the inlet stream into the 
4th heat exchanger is the manipulated variable. 
The feedback control system is presented in Fig. 3, 
where TC is the temperature PI controller. HEN 
has nonlinear and asymmetric dynamics and it 
is  influenced by load disturbances. These distur-

Fig. 2. Feedback control system with a neural-network-based predictive controller.
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bances were represented by the coolant temperature 
changes in the inlet stream into the first HE in the 
simulation experiments and they were as follows: 
temperature decreased by 3 °C at t = 30 min, then 
increased by 4 °C at t = 90 min and finally decreased 
by 2 °C at t = 150 min.
The conventional PI controller is represented by 
the transfer function (6)
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The controller parameters are: kp  — proportional 
gain, ti — integral time.
For PI controller tuning, HEN was identified 
using the step-response-based method. The 
resulting model took the form of the n-th order 
plus time delay transfer function (7) with the 
transfer function parameters: order n = 2, gain 

K = –69.25 °C min m–3, time constant t = 3.15 min 
and time delay D  =  0.125  min (Mikleš and Fikar, 
2007). The Chien-Hrones-Reswick method was 
used for controller tuning (Corriou, 2004). The PI 
controller parameters are: kp = –0.1274 °C–1 min–1 m3, 
ki = –0.0337 °C–1 min–2 m3. Negative values of con-
troller parameters reflect the fact that an increase 
of cooling fluid flow rate decreases the temperature 
of hot fluid.
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Conventional neural network predictive control 
of HEs
As mentioned above, the NN process model has 
first to be trained (Vasičkaninová et al., 2017) to de-
sign NNPC. The neural network had four delayed 

Fig. 3. Feedback control system with temperature PI controller.

Fig. 4. Training data for NN model. Fig. 5. Validation data for NN model.
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process inputs, three delayed process outputs, and 
one hidden layer with six neurons and 1,500 train-
ing samples were used for training, validation, and 
testing. Training and validation results are shown 
in Figs. 4 and 5. A small prediction error confirms 
the success of the training.
The parameters’ values in the performance criterion 
(4) used for the NNPC design were: horizons values: 
N1 = 1, N2 = 7, Nu = 2, weight parameter: l = 0.1. The 
control input constraints were selected as follows: 
minimum control input: q1min = 0.01 m3 min–1, maxi-
mum control input: q1max = 1 m3 min–1.

Neural-network-predictive-control-based 
control systems

NNPC-based cascade control
Cascade control, which represents a multi-loop con-
trol structure with an auxiliary controlled variable, 
is often used in the process industry to improve the 
quality of feedback control when certain types of 
disturbances and uncertainties occur (Bequette, 
2003).
This setting shows one manipulated variable and 
more than one measured variables. The inner 
and outer control loops contain separate feedback 
controllers. The main advantage of using cascade 
control is that the disturbances occurring in the 
secondary loop are corrected by the secondary 
controller before they affect the primary controlled 
output value. The primary controller is usually 
tuned as a controller with integral action because it 
is responsible for the control objective achievement 
and steady-state error removal. The secondary 
controller has to compensate the load disturbance 
as fast as possible; usually, high gain P controller is 
used for very fast action. The secondary controller 
is tuned first and the primary controller is tuned 
with the inner loop in action. Because the behavior 
of the controlled process is often non-linear and 
asymmetric, and since the internal loop dynamics 

has to be taken into account, tuning the primary 
controller is not simple (Ogunnaike and Ray, 1994). 
Thus, the neural network model of the controlled 
process can be used to improve the tuning of the pri-
mary controller (Fig. 6). Primary controlled output 
was the temperature of the cooled fluid in the outlet 
stream of the 4th HE. The primary NN predictive 
controller settings were as follows: four delayed 
process inputs, three delayed process outputs and 
one hidden layer with six neurons, and 1,000 train-
ing samples were used for training, validation, and 
testing. Parameters’ values in the performance 
criterion (4) were: horizons: N1 = 1, N2 = 7, Nu = 4, 
weight parameter: l = 0.01, minimum controlled 
output: Tcmin = 25 °C, maximum controlled output: 
Tcmax = 180  °C. The conventional P controller was 
used as a secondary controller to compensate load 
disturbance as quickly as possible. The secondary 
controlled output was the cold water flow rate in 
the inlet stream into the 4th HE. The gain of the 
se condary P controller was –0.04 °C–1 min–1 m3.

NNPC-based control system 
with disturbance measurement
Feedback control is usually used with feedforward 
control to combine the advantages and avoid the 
disadvantages of both control structures (Bequette, 
2003). The feedforward controller, also called 
a compensator, compensates for the effect of 
disturbances on the controlled variable if both an 
accurate model of the controlled process and an 
accurate model of the disturbance process for mea-
surable disturbance are used. The control loop with 
feedforward compensation of the disturbance is 
forced to eliminate the influence of the disturbance 
to its full extent. By introducing a compensator in 
the feedforward loop, the disturbances are partially 
eliminated before they enter the feedback loop, 
and thus the feedback controller does not have to 
generate large control actions as in case of a simple 
feedback control loop.

Fig. 6. NNPC-based cascade control for HEs, TC — primary NN predictive controller, 
FC — secondary conventional P controller.
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In the designed NNPC-based control system with 
disturbance measurement (Fig. 7), feedforward 
control is used in combination with the NNPC-
based feedback control. The NN predictive control-
ler described in section Conventional neural network 
predictive control of HEs was used as the feedback 
controller. The transfer function of the feedforward 
compensator was calculated from the transfer func-
tions of the controlled system and the disturbance 
process and it was simplified to the conventional P 
controller with the gain of 0.001 °C–1 min–1 m3.

Simulation results

Simulation results obtained using the designed con-
trol systems without and with measurement noise 
are presented in Figs. 8  and 9, respectively. The 
simulation results were compared according to the 
total cooling agent consumption, Vtotal, consumed 

during control, and the integral IAE (integrated 
absolute error) and ISE (integrated squared error) 
quality criteria defined e.g. in Ogunnaike and Ray 
(1994) as follows:

 
0

IAE ( ) de t t
¥

= ò  (8)

 2

0
ISE ( ) de t t

¥
= ò  (9)

Reference temperature r = 34 °C changed to 32 °C at 
60 min and then to 31 °C at 120 min.
The simulation results in reference tracking and 
disturbance rejection without measurement noise 
are presented in Fig. 8. Table 1 summarizes the ob-
tained numerical results. Consumption of the cool-
ing agent expressed by the total consumed volume, 
Vtotal, and the values of IAE and ISE was the lowest 
with the NNPC-based cascade control.

Fig. 7. NNPC-based control system with disturbance measurement for HEs, 
TC — NN predictive feedback controller, FRC — feedforward compensator.

Fig. 8. Controlled temperature without measurement noise.
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In Figs. 8  and 9, the reference is represented by 
the green solid line and the controlled output is 
indicated as follows: red dotted line — PI control, 
black dashed line  — NNPC, blue dashed-dotted 
line — NNPC-based cascade control, yellow line — 
NNPC-based control system with disturbance 
measurement.
The simulation results in reference tracking and 
disturbance rejection with measurement noise are 
presented in Fig. 9. Table 2 summarizes the obtained 
numerical results. Consumption of cooling agent, 
Vtotal, and the values of IAE and ISE were the lowest 
when using the NNPC-based cascade control.

Conclusions

Conventional PI controller designed using the 
Chien-Hrones-Reswick method and NNPC were 

compared to a complex two-controller control 
structure, namely NNPC-based cascade control, 
and NNPC-based control system with disturbance 
measurement. These advanced control strategies 
were used to control four heat exchangers in series 
with counter current configuration. Simulation re-
sults in reference tracking and disturbance rejection 
without noise and with measurement noise were 
compared. According to the IAE and ISE criteria, 
all control structures with NNPC have overcome 
conventional PI control. Results of the simulation 
experiments showed that the NNPC-based cascade 
control reduced both, the settling time and over-
shoots. The best results were achieved when using 
the NNPC-based cascade control, as confirmed by 
the IAE and ISE criteria, as well as to the mini-
mum volume of consumed cooling water. Cascade 
control is often used to eliminate unmeasurable 

Fig. 9. Controlled temperature with measurement noise.

Tab. 1. Values of IAE, ISE, and Vtotal in simulation experiments without measurement noise.

Control system IAE (°C min) ISE (°C2 min) Vtotal (m3)

PI control 27.86 21.18 84.02

NNPC 24.73 17.16 83.94

NNPC-based cascade control   7.38   5.69 83.12

NNPC-based control system with disturbance measurement 22.27 12.02 84.26

Tab. 2. Values of IAE, ISE, and Vtotal in simulation experiments with measurement noise.

Control system IAE (°C min) ISE (°C2 min) Vtotal (m3)

PI control 28.13 21.69 84.56

NNPC 23.80 11.83 84.30

NNPC-based cascade control 12.36 5.81 83.62

NNPC-based control system with disturbance measurement 22.47 12.45 84.95

Vasičkaninová A et al., Control of heat exchangers in series using neural network…
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disturbances and accelerate process response. From 
this perspective, the NNPC-based cascade control 
strategy is suitable to be implemented in practice 
with promising control performance.
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