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Agile manoeuvres using
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Abstract: This paper shows how model predictive control (MPC) can be used to perform agile manoeuvres 
in a pendulum-on-a-cart system, which is an abstraction of many mechanical systems commonly used in the 
industry, such as cranes. Specifi cally, the problem of moving a cart on which a pendulum is mounted using 
a free joint is rapidly moved from one position to another one while mitigating the swings of the pendulum. 
To achieve this goal, an optimization-based MPC strategy is employed that selects the control moves while 
minimizing the chosen cost function and, simultaneously, enforcing constraint satisfaction. As the controlled 
system is nonlinear, two options are considered. The fi rst one solves the nonlinear MPC problem in an ap-
proximate fashion using the so-called random shooting approach. The second method is based on the fi rst 
one approximating the nonlinear system by a linear one, followed by applying convex MPC techniques. The 
performance of both strategies was compared by means of real-time experiments.
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 Introduction

Chemical reactors, heat exchangers and many
other processes in the chemical industry perform 
with nonlinear dynamics which makes their control 
a challenging task. Especially when the operation of 
such processes accentuate safety. Control strategy 
offering the most benefi ts is model predictive control 
(MPC) (Maciejowski, 2002) due to its ability to per-
form optimized control actions while state and input 
constraints are enforced. Therefore, MPC has be-
come the most preferred and popular control ap-
proach in the process industry, as proven by the sur-
vey of Qin and Badgwell (2003). Many successful 
applications of the MPC strategy control chemical 
reactors (Oravec and Bakošová, 2012; Bakošová and 
Oravec, 2014; Oravec and Bakošová, 2015; Bakošová 
et al., 2013), heat exchangers (Oravec et al., 2016a, 
2018), and distillation columns (Martin et al., 2013). 
Alternatively, MPC can also be used as a supervisory 
control layer that can be coupled with conventional 
PID controllers (Klaučo et al., 2017).
The principle of MPC is to solve an optimization 
problem based on a mathematical model of the 
controlled system. Additionally, future behavior 
of the system is predicted and control inputs are 
optimized over the whole prediction horizon. In 
case of a linear model of the system, the evalua-
tion of control input can be fast and relatively easy. 
Limitations of the linear model stem in a narrow 
range of its validity and often insuffi cient descrip-
tion of all the distinctions of the real process. To 
tackle these limitations, a nonlinear model of the 
process can be used. Performing nonlinear MPC 
can lead to non-convex optimization problems that 

require increased computational power. In fact, 
obtaining such a solution is unattainable within 
one sampling period if the process is characterized 
by fast dynamics.
In recent years, reducing of computational com-
plexity affi liated with non-convex optimization 
problems within nonlinear MPC (NMPC) has 
become a serious research fi eld (Allgöwer and 
Zheng, 2012). Various methods intended for the 
solution of such optimization problems have been 
described (Wright and Nocedal, 1999; Čižniar et 
al., 2009; Kirkpatrick et al., 1983; Poli et al., 2007). 
Some of the methods are focused on searching 
for the minimum in a certain local area. There-
fore, there is always a possibility of solution sub-
optimality. Searching for the global minimum can 
be performed in a stochastic or deterministic way. 
Simulated annealing is a stochastic method based 
on inspecting an enormous number of solutions 
and subsequent convergence to the lowest value of 
the cost function of the NMPC. On the other hand, 
the drawback of the deterministic methods lies in 
their applicability in small size problems.
One of the systems with fast and nonlinear dy-
namics is also a pendulum-on-a-cart. The problem 
of unwanted oscillations at the output occurs 
during the system control. The pendulum system 
represents a crane moving cargo. If this crane is in 
the vicinity of other objects, its oscillation is very 
undesirable as it can cause considerable damage. 
At the same time, the speed at which the crane 
transmits objects plays an important role. The 
faster the device runs, the more it can transfer and 
the more effi cient it is. Higher speeds, however, 
cause larger oscillations to be mitigated. The com-
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promise between the speed of operation and the 
oscillation amplitude is agile maneuvers which 
operate with the device the fastest way possible 
to avoid violation of the constraints given for the 
oscillation amplitude.
This paper focuses on the solution of this NMPC 
problem employing the random shooting ap-
proach (Dyer et al., 2014). Application of this 
method is spread in machine learning (Sahoo et 
al., 2018) or robotics (Piovesan and Tanner, 2009) 
fi elds. Elegance and simplicity of the method 
is based on the fast randomly generated control 
input sequences pursued by investigation of the 
constraints enforcing and evaluating the cost func-
tion value. The sequence with the lowest value 
of the performance index is considered as the 
solution. Due to the random selection, solution 
sub-optimality can occur, while increased number 
of random sequences reduces the extent of such 
sub-optimality. However, the solution is feasible 
and it guarantees safe operation of the manipu-
lated system.
Control performance of NMPC and MPC based 
on the linear model were compared in this paper. 
Scenarios of the agile maneuvers control in the 
pendulum-on-a-cart system were the same for both 
control strategies.

 Theoretical

We considered a control of a system in the discrete-
time domain represented by the state-update equa-
tion

 x(t + ) = f(x(t), u(t)), (1)

and the output equation

 y(t) = g(x(t), u(t)), (2)

where x(t)  n represents the state vector at time t,
u(t)  m are the control commands, and y(t)  p are 
the controlled outputs. Additionally, x(t + ) repre-
sents the successor state. Finally, f:n × m  n and 
g:n × m  p are, in general, nonlinear functions.
The objective of model predictive control is to 
use system equations (1) and (2) to predict future 
evolution of the system and to optimize the control 
inputs to achieve optimal behavior while meeting 
all system constraints. Mathematically, the MPC 
problem can be stated as
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where xk, uk, yk are the state, input, and output pre-
dictions at the k-th step of the prediction horizon, 
respectively,||·|| is any vector norm, and , ,  are 
state, input, and output constraint sets, respectively. 
Optimization is performed over a fi nite prediction 
horizon N and yields the sequence {u*

0, …, u*
N–1} of 

control moves that are optimal for the given initial 
condition, x(t) per (3g) and the given reference 
value, xref.
The trouble with optimal control inputs from (3) 
is that if functions f(·) and g(·) in (3b)—(3c) are 
nonlinear, or if the constraints sets are non-convex, 
(3) becomes a non-convex optimization problem 
that is diffi cult to solve to global optimality. In the 
subsequent sections, two principal ways allowing (3) 
to be solved quickly are reviewed.
The fi rst method to solve a nonlinear MPC prob-
lem of (3) quickly is the so-called random shooting 
method, introduced in more details in Bakaráč 
and Kvasnica (2018). In principle, the method 
investigates a (possibly large) number of randomly 
generated control sequences {u0, …, uN–1}. For each 
random sample, the response of the nonlinear sys-
tem, i.e., the sequences {x1, …, xN} and {y0, …, yN–1} are 
calculated by (1) and (2), respectively, as a forward 
simulation of the nonlinear system starting from 
x0 = x(t). Subsequently, the validity of constraints in 
(3d)—(3f) is checked and any infeasible trajectories 
are discarded. Among the feasible trajectories, the 
random shooting method selects the sequence that 
yields the lowest value of the cost function (3a).
The advantage of random shooting is that it can 
cope with arbitrary nonlinear dynamics in (1) and 
(2) since only forward simulations are required. 
Moreover, arbitrary non-convex constraint sets can 
be employed. Therefore, the procedure can be used 
to investigate a very large number of randomly 
gene rated input trajectories in a short time. How-
ever, the obvious disadvantage is that the resulting 
control actions are merely sub-optimal. Moreover, 
due to their random generation, they can exhibit 
signifi cant chattering and oscillations, which might 
not be desirable from a practical point of view. 
However, the sub-optimality can be mitigated by 
resorting to a very large number of random se-
quences (e.g. one million).
Another approach is to linearize the nonlinear 
dynamics in (1)—(2) around some chosen operating 
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point, e.g. xS and uS. Applying the truncated Taylor 
expansion yields the linear approximation:
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which can be written as

 x(t + ) = Ax(t) + Bu(t), (6a)

 y(t) = Cx(t) + Du(t), (6b)

where matrices A, B, C, D result from the partial 
derivatives of f(·) and g(·).
The advantage of the linear prediction in (6) is 
that when it is used in (3b)—(3c), the MPC problem 
becomes a convex optimization problem, which 
can be easily solved using conventional optimiza-
tion techniques, provided the constraint sets , , 
 are convex sets. If they are not, their respective 
inner convex approximations can be derived e.g. 
by maximization of the inscribed ellipsoid volume, 
or by searching for the largest inscribed hyper-box. 
The latter approach is preferred as the constraints 
in (3d)—(3f) become linear and are easier to tackle 
compared to quadratic constraints arising from 
an ellipsoid inner approximation. If, moreover, 
the norms in (3a) are squared 2-norms, the MPC 
problem (3) becomes a convex quadratic program 
that can be solved e.g. by active-set or interior-point 
methods.

Experimental

In this  work, model predictive control was applied 
to control a laboratory mechanical system consist-
ing of a cart on which a pendulum is mounted 
using a free joint, shown in Fig. 1. Such a system 
represents a crane moving a cargo from one posi-
tion to another one as quickly as possible while 
mitigating the swings of the cargo to prevent col-
lision with obstacles. Dynamics of the pendulum is 
represented by four nonlinear state equations in the 
continuous-time domain:

 1 2,x x=  (7a)
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along with the output equation

 y = Lsin(x1) + x3. (8)

Here, x1 represents the pendulum’s angle, x2 is the 
angular velocity of the pendulum, x3 is the posi-
tion of the cart, and x4 is its velocity. The input of 
the system is u, the acceleration of the cart. The 
output from the system, y is the x-position of the 
pendulum’s endpoint. Model parameters in (7) are 
L = 21  cm, g = 9,81 m s–2, and b = 1. The control 
objective is to change the position of the end point 
of the pendulum in the shortest possible time. The 
trajectory of the movement has to be such that all 
states of the system enforce the state and input 
constraints:

 –  x1  , (9a)

 –  x2  , (9b)

 –0.25  x3  0.25, (9c)

 –2.0  x4  2.0, (9d)

 –  y  0.45, (9e)

 –4  u  4. (9f)

Naturally, as the cart moves it induces oscillations 
of the pendulum, which are not desired as they 
may lead to the pendulum’s endpoint colliding with 
obstacles. Therefore, the y  0.45 constraint must be 
met at all times to avoid such collisions.
To achieve a collision-free transition from one posi-
tion to an another, model predictive control was 
applied. Specifi cally, the continuous-time system 
in (7) was fi rst discretized using the sampling time 
  =  0.02  s and the forward Euler discretization. 
Specifi cally, given a continuous-time state equation 
x• = f(x, u), its discrete-time version was achieved:

 x(t + ) = x(t) + f(x, y), (10)

Alternatively, if the forward Euler discretization is 
imprecise, explicit Runge-Kutta discretization can 
also be applied. Specifi cally, the second-order ex-
plicit Runge-Kutta method yields the discrete-time 
system:

 x(t + ) = x(t) +
 f(x(t) + 0.5f(x(t), u(t)), u(t) + 0.5). (11)

With the discrete-time version of the dynamics in 
(7) at hand, the MPC problem in (3) was formulated 
with a prediction horizon of N = 20 steps. The cost 
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function in (3a) was chosen as (xk – xref)TQ(xk – xref) + 
+ uT

kRuk with Q = [1, 0, 30, 0]·I4×4 and input penalty 
R = 0.01. Notice that the penalty on the third state 
is 3000 times higher than that on the control input. 
Therefore, the controller has a large incentive of 
changing the position quickly even at the expense 
of more aggressive control actions.
To solve the optimal control inputs in (3), the two 
methods outlined in the previous section were 
applied. First, the random shooting approach 
was applied in conjunction with the discretized Fig. 1. Laboratory Pendulum.

Fig. 2. First graph shows the position of the pendulum’s endpoint over time. The blue solid line
represents performance under linearization-based MPC, while the profi les for random shooting

are shown using red dashed lines. The reference position of the pendulum’s endpoint is represented
by green dashed line and the constraint for this output by the black dashed line.

Secong graph shows the respective control actions over time using the same color scheme.

Fedorová K et al., Agile manoeuvres using model predictive control.
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nonlinear dynamics from (7). The random shoot-
ing controller was constructed using the Rand-
ShootMPCController method of the MPT toolbox, 
which also allows compiling the controller into a 
mex function for faster execution. To apply convex 
MPC, the dynamics was fi rst linearized around a 
zero position and speed, providing (after discretiza-
tion) the linear prediction model (6). Note that all 
constraints in (9) are already linear (thus the sets , 
,  in (3d)—(3f) are convex), therefore no further 
processing was necessary. The resulting quadratic 
program was then solved using the Gurobi solver.
Both approaches were tested in experiments using 
a laboratory pendulum lab process, described in 
more details in Oravec et al. (2016b). However, 
not all state variables could be directly measured. 
Specifi cally, only x1 (pendulum’s angle) and x3 
(cart’s position) can be directly accessed. As MPC 
is a state-feedback control policy, the remaining 
states have to be estimated by devising a suitable 
state observer, such as the Luenberger observer. 
The state estimation as well as computation of con-
trol actions from (3) and all data processing were 
implemented in Matlab on a PC connected to the 
pendulum via a USB cable. The MPC controller 
ran on a sampling time of 20 ms using the fi xed-
rate periodic timer in Matlab.

Results and discussion

To compare the control pe rformance of each 
strategy, the following scenario was considered. A 
cart carrying a pendulum is in the initial position 
x3(0) = –0.2 m in relation to the center of the range 
of its possible movements. At the beginning, the 
pendulum is in a steady downright position with 
x1(0)  =  x2(0)  =  0. The objective of the controller 
is to move the cart to the desired fi nal position 
x3(T)  =  0.2  m while satisfying all constraints pre-
sented in (9). Specifi cally, the pendulum’s endpoint 
position must not exceed 0.45 m while the cart 
changes its position from –0.2 m to 0.2 m.
Experimental results are shown in Fig. 2. The fi rst 
graph shows the measured position of the pendu-
lum’s endpoint over time. As it can be seen, both 
approaches are able to move the cart to the desired 
position within four seconds while respecting the 
constraints on the pendulum’s endpoint position. 
However, the linearization-based method performs 
signifi cantly better, exhibiting a smaller overshoot. 
The random shooting method, on the other hand, 
shows more oscillations, which is due to the fact that 
it generates control actions at a random basis. This 
can be observed from the bottom graph in Fig. 2. 
However, both controllers meet the specifi ed con-
trol goal with a similar settling time.

It should be noted that the oscillatory behavior 
of the control actions is partly due to the physical 
construction of the device which only provides a 
fi nite resolution of measurements. Therefore, only 
sensory data are sampled, which leads to deterio-
rated performance.

Conclusions

This paper shown how MPC can be applied  to 
perform agile manoeuvres using the cart-and-
pole laboratory setup. Two versions of the MPC 
problem were considered. The fi rst one employed 
a full nonlinear description of the processes but 
provided only a sub-optimal solution to the optimi-
zation problem. The second version was based on 
linearization of the nonlinear dynamics, followed 
by formulation and solution of the MPC problem 
as a convex quadratic program. Both versions of 
the controller were implemented in real time with 
satisfactory results using a sampling time of 20 ms.
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