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Abstract: This paper presents a fast way of implementing nonlinear model predictive control (NMPC) using the 
random shooting approach. Instead of calculating the optimal control sequence by solving the NMPC problem 
as a nonlinear programming (NLP) problem, which is time consuming, a sub-optimal, but feasible, sequence 
of control inputs is determined randomly. To minimize the induced sub-optimality, numerous random control 
sequences are selected and the one that yields the smallest cost is selected. By means of a motivating case study 
we demonstrate that the random shooting-based approach is superior, from a computational point of view, to 
state-of-the-art NLP solvers, and features a low level of sub-optimality. The case study involves a continuous 
stirred tank reactor where a fast multi-component chemical reaction takes place.
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1. Introduction

Controlling processes with a nonlinear dynamics, 
such as chemical reactors, is a challenging tasks 
especially if a safe operation of the process is of 
paramount importance. Among all available control 
strategies, model predictive control (MPC) (Macie-
jowski, 2002) is among the most successful ones as it 
enables to select control inputs such that constraints 
can be enforced while optimizing the overall process 
behavior. In fact, the survey of (Qinand Badgwell, 
2003) shows that MPC is indeed the most popular 
and preferred control approach adopted by the 
process industry. A plethora of MPC success stories 
is reported in the literature especially for control-
ling chemical reactors (Oravec and Bakošová, 2012; 
Bakošová and Oravec, 2014; Oravec and Bakošová, 
2015; Bakošová et al., 2013), distillation columns 
(Martin et al., 2013), and heat exchangers (Oravec et 
al., 2016, 2018), to name just a few.
MPC optimizes the control inputs by employing a 
mathematical model of the controlled process to 
predict its future behavior. Conventionally, MPC is 
based on linear prediction models. The advantage 
of such models is that the selection of optimal 
control inputs is relatively simple and can be done 
quickly. However, linear models have only limited 
validity and often do not suffi ciently capture all 
nuances of the controlled process. Therefore, one 
would prefer to solve the MPC problem using a 
nonlinear model of the processes. Such nonlinear 
MPC (NMPC), however, is often non-convex, 
renderingthe subsequent optimization a tedious 
and time-consuming task. The increased compu-
tational requirements of NMPC often prohibit its 

implementation in real time as the optimal control 
actions need to be determined within the duration 
of one sampling period.
Nonlinear model predictive control is therefore a 
vibrant research fi eld (Allgöwer and Zheng, 2012) 
with the primary aim of reducing the computa-
tional load associated with solving a non-convex 
optimization problem. Numerous approaches are 
available in the literature for solving such problems 
either to local or to the global optimality. Local 
methods (Wright and Nocedal, 1999), such as 
steepest descent or sequential quadratic program-
ming approaches, are typically based on moving 
along the gradient of objective function and the 
constraints and therefore require certain regularity 
assumptions, such as all functions (including the 
prediction model) to be once or twice continuously 
differentiable. Global methods are either deter-
ministic or stochastic. Deterministic methods often 
employ convex relaxations coupled with a branch-
and-bound exploration of the search space (Čižniar 
et al., 2009), but they are limited, from a practical 
point of view, to problems of a small size. Stochastic 
approaches, such as simulated annealing (Kirk-
patrick et al., 1983) or particle swarm optimization 
(Poli et al., 2007) are based on investigating a large 
number of random solutions, each evaluated using 
the NMPC cost function by selecting the candidate 
with the lowest cost. However, they are unable to 
exploit the structure of the NMPC problem and 
therefore feature a slow performance.
In this paper we propose to solve non-convex 
NMPC problems using the random shooting ap-
proach, which is popular in the robotics (Piovesan 
and Tanner, 2009) and machine learning (Sahoo 
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et al., 2018) communities. The method is based 
on generating a large number of random control 
sequences, followed by selecting the random se-
quence that is feasible (i.e., satisfi es all constraints 
over the whole prediction window) and features the 
best value of the performance index. Even though 
the resulting control sequence is sub-optimal, it is 
still feasible, thus guarantees a safe operation of 
the controlled processes. Moreover, sub-optimality 
can be reduced by increasing the number of ran-
dom scenarios. Despite its naivety, the approach 
performs well in real-life situations due to its very 
simple and fast implementation. In fact, if the un-
derlying optimization problem is convex, even hard 
bounds on the runtime and the sub-optimality of 
the random shooting approach can be given (Dyer 
et al., 2014). Most importantly, the random shoot-
ing approach assumes no regularity conditions on 
the performance index and the constraint sets, and 
is therefore very versatile. As an example, it can be 
applied to solve NMPC where the prediction model 
and/or the performance index are discontinuous/
non-differentiable, or if the constraint sets are 
non-convex and even discontinuous, such as fi nite 
sets. Moreover, the algorithm only requires the 
membership oracle of the constraints and an evaluation 
oracle of the performance index (Dyer et al., 2014). 
Therefore, black-box versions of the performance 
index and the constraints can be handled by the 
random-shooting approach without diffi culties.
In this paper we apply random shooting to solve an 
NMPC problem of controlling a continuous stirred 
tank reactor (CSTR) in which a fast multi-compo-
nent chemical reaction  2  A C B  takes place 
(Fissore, 2008). By a simulation study we show that 
the random shooting approach features a 100-times 
faster computation of control inputs compared to a 
global solver, and features just a small level of sub-
optimality.

2.  Theoretical

We consider the control of nonlinear systems in the 
discrete-time domain represented by

 x(t + ) = f(x(t), u(t)), (1)

where ( ) nx t Î  is the state vector at time t, u(t) is the 
vector of control inputs, x(t + ) is the successor state 
at time t +  with denoting the sampling time, and 

: n m nf ´     is the (possibly nonlinear) state 
update function.
The objective of nonlinear model predictive control 
(NMPC) is to determine the sequence {u*

0, …, u*
N–1} 

of optimal control inputs over a fi xed prediction 
horizon N Î   that bring the system in (1) from 
any admissible initial state x(t) to a desired fi nal 

state while minimizing a given performance index, 
and making sure that the control inputs, as well as 
the system states remain bounded by ,x uÎ Î    
where nÍ   and mÍ  . Specifi cally, the opti-
mal control sequence can be obtained by solving 
the following NMPC problem:

  (2a)

s.t. ( ), , , , ,1  0 1j j jx f x u j N+ = = ¼ - (2b)

, , , , 0 1jx j NÎ = ¼ - (2c)

, , , , 0 1ju j NÎ = ¼ - (2d)

,Nx Î  (2e)

( )0 .x x t= (2f)

Here, xj and uj represent, respectively, the state and 
input predictions at time step j of the prediction 
window, whose length is N (the prediction horizon). 
The predictions are initialized from the currently 
known measurement of the state x(t), or its estimate. 
The performance index in (2a) involves two penalty 
functions: N  as the fi nal penalty, and   as the 
stage cost. A particular form of these two functions 
depends on the control objective. If, for instance, 
one aims at regulating the nonlinear system in (1) to 
a desired steady state, represented by the tuple (xS, 
uS), one can choose

 ( ) ,2
SN N N Px x x= -    (3)

and

 ( ) ,2 2
S S,j j j Q j Rx u x x u u= - + -      (4)

where 2 T
Wz z Wz=   is the weighted squared two-

norm of a vector. Alternatively, the performance 
index (2) can account for economic aspects, such 
as the maximization of the yield of a chemical 
reaction, or to the minimization of input costs. 
Additional control objectives can be added to the 
stage cost (4). Frequently, one wants to make the 
control action smooth and not to fl uctuate in time 
too much. This requirement can be accomplished 
by penalizing the slew rate of control inputs by 
adding the term 2

1j j Du u --   to (4) with a suit-
able penalty matrix   and, for j = 0, u–1 = u(t – ) 
representing the control input from the previous 
optimization. The constraint sets in (2c)—(2e) typi-
cally involve min/max bounds on the states and 
inputs, but they can also entail additional require-
ments. For instance, one can enforce that the slew 
rate of control actions is bounded by adding the 
constraint 1j ju u -- Î  to (2) for all steps of the 
prediction horizon, where the set   consists of 
lower/upper bounds on the slew rate.
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If the state-update equation f(x, u) in (2b) is non-
linear, or if the constraint sets , , ,     are 
non-convex, the NMPC problem (2) is a nonlinear 
optimization problem. Solving such a problem to 
its global optimum is, however, challenging and is 
likely to take a substantial amount of time. For a 
safe feedback implementation, however, we require 
that the optimal control sequence {u*

0, …, u*
N–1} 

is obtained within the duration of one sampling 
instant, i.e., . The reason being that NMPC is 
implemented in a feedback arrangement using 
the receding horizon principle where only the fi rst 
element of the sequence, i.e., u*

0 is actually imple-
mented to the system. Then, at the next sampling 
instant, new state measurement is conducted and 
the NMPC problem (2) is re-solved to obtain a new 
input sequence, from which again only the fi rst 
element is used for control. The NMPC feedback 
law is thus u(t) = u*

0(x(t)). If the time required to 
solve (2) is longer than the sampling time , the 
feedback implementation can compromise safety of 
the system as it may lead to violation of constraints 
and even to instability. Therefore it is of imminent 
practical importance to be able to solve NMPC 
problems as in (2) fast enough. In practice, one 
even often sacrifi ces optimality in favor of obtain-
ing a sub-optimal control sequence as long as such 
a sequence satisfi es constraints in (2c)—(2e).
In this paper we propose to solve the NMPC prob-
lem (2) using the random shooting method, which 
belongs to the class of global stochastic optimiza-
tion techniques. It is based on fi rst generating a 
(possibly large) number of independent and identi-
cally distributed random control actions u0, …, uN–1, 
followed by retaining only the sequences that satisfy 
the constraints in (2c)—(2e). To do that, (2b) is fi rst 
used to obtain the state predictions {x0, …, xN} by 
simulating the system starting from x0 = x(t) and
using the random control sequence {u0, …, uN–1}. 
Once the predicted state trajectory is available, 
feasibility can be straight forwardly checked via 
(2c)—(2e). Finally, among the feasible sequences, 
the one that yields the smallest value of the perfor-
mance index in (2a) is selected. The reason random 
shooting is well suited to solve NMPC problems (2) 
stems from its ability to exploit the structure of the 
problem and to check the satisfaction of the con-
straints step-by-step instead of having to check the 
whole sequence at once. Therefore infeasible can-
didates (i.e., those that do not satisfy the constraints 
in (2b)—(2e)) can be ruled out quickly with only low 
computational effort. This signifi cantly reduces the 
overall runtime of the algorithm. Moreover, the 
random shooting method assumes no regularity 
conditions on the dynamics, constraints, and/or 
the performance index in (2a). The dynamics in (1) 

can therefore be arbitrary, e.g., discontinuous, non-
differentiable, etc. Moreover, the constraints can 
be non-convex sets, including fi nite sets where the 
control inputs are either binary or integer. A price 
to be paid for such a generality is the sub-optimality 
of the method.
A pseudo-code of the proposed random shooting 
NMPC method is reported as Alg. 1. The algorithm 
performs at most Nf selections of the random input 
sequence using a while-loop. Each pass of the loop 
then selects a random control sequence, checks its 
feasibility over the whole prediction horizon using a 
for-loop, and updates the performance index using 
the stage cost (4). This is done step-by-step, aborting 
the for-loop prematurely if the control sequence is 
infeasible at some prediction step j  {0, …, N – 1}. 
Finally, if even the terminal set constraint in (2e) 
is satisfi ed, the performance index is updated with 
the terminal penalty in (3), and the cost of the 
current random input sequence is compared to 
the so-far best known random solution. The main 
advantage of Alg. 1 is twofold. First, each iteration 
only involves simple calculations, such as checking 
of the constraints in Step 6, updating the value of 
the performance index in Step 7, and the evaluation 
of the state-update equation f(x, u) in Step 8; thus no 
costly optimization is involved. Second, infeasible 
random sequences can be ruled out quickly (cf. 
Steps 6 and 10) as constraints are checked step-by-
step over the prediction window, further mitigating 
the runtime. Therefore the implementation of 
Alg. 1 is very simple and it runs fast.
Alg. 1  investigates a total of Nf random control 
sequences, returning the sequence with the lowest 
value of the performance index in (2a). We remark 
that, due to Steps 5, 6 and 13, the output generated by 
the algorithm is always feasible for the NMPC prob-
lem (2), despite being suboptimal. As a consequence, 
if the terminal set   in (2e) is chosen as a positively 
invariant set for the system in (1), Alg. 1 provides re-
cursive feasibility guarantees. One such choice is to 
take { }Sx= , i.e., to use the desired steady-state as 
a terminal point constraint. Closed-loop stability can 
be achieved, for instance, by adding a contraction 
constraint of the form 1 S Sj jx x x x+ - < -     where 

⋅   is any vector norm.
The procedure for selecting the random control 
input ju Î   in Step 5 depends on the type of the 
input constraint set  :
Case 1: If   is a fi nite set, i.e.,   = {u(1), …, u(q)}, 

then uj = u(r) where r is a random integer from the 
interval [1, q].

Case 2: If  is a hyperbox defi ned by its min/max 
bounds, i.e., min min{  | }u u u u= £ £ , then uj is 
generated by uj,i = umin,i + ai(umax,i – umin,i) for i = 1, 
…, m where ai  U(0, 1) are uniformly distributed 
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random numbers from the interval [0, 1], and uj,i 
denotes the i-th coordinate of the vector m

ju Î . 
Notice that hyperbox-type of input constraints are 
predominantly used in practice.

Case 3: If   is a convex polytope, two avenues can 
be taken – an iterative and a non-iterative one:
Case 3.1: The iterative procedure fi rst con-

structs, off-line, the tightest outer hyperbox 
approximation   of   by solving 2m linear 
programs (Suard et al., 2004). Then, in Step 5, 
random values ju Î   are generated by ran-
domly sampling the hyperbox   as discussed 
in Case 2  above until ju Î   is verifi ed to 
hold. Therefore multiple random selections 
might be required to guarantee that ju Î  .

Case 3.2: The non-iterative procedure constructs, 
off-line, the largest ball c 2{  | }u u u r= - £   
inscribed into  , i.e., Í  . Note that such 
a ball can be constructed by solving a single 
linear program (Suard et al., 2004). Then uj = 
an + uc where ai  U(0, r) with r denoting the 
radius of the ball, and n = [n1, …, nm]T with 
ni  U(–1, 1) for i = 1, …, m being a vector with 
components randomly distributed over the 
interval [–1, 1]. Clearly, cv ua + Î  and, since 

Í  , ju Î   as a consequence.
Case 4: If   is a generic (possibly non-convex) 

set then one can proceed as in Case 3.1 by fi rst 
constructing, off-line, the outer hyperbox 
approximation of   by solving 2m (possibly 
non-convex) optimization problems, followed by 
sampling the outer approximation and checking 
if ju Î  .

Naturally, the quality of the best feasible control 
sequence generated by the random shooting 
algorithm depends on the number Nf of random 
scenarios investigated. The more samples, the 
greater the chance of fi nding the global optimum 
is. If the NMPC (2) problem is convex, then one can 
provide a bound on the minimal number of feasible 
samples that provides a probabilistic bound on the 
suboptimality of the sequence {u0, …, uN–1} found 
by Alg. 1. The bound is due to (Vidyasagar, 2001; 
Tempo et al., 2012) and applies to random samples 
that are selected in Step 5 independently and iden-
tically distributed:
Lemma 2.1 If the number of feasible samples satisfi es

( )( )
( )( )

1 / 1 /100

1 / 1 /100f

log
N

log

d

a

-
³

-
,

then the control sequence {u0, …, uN–1} generated by 
Alg. 1 is by a per cent suboptimal with a confi dence of d 
per cent.
As an example, if the sequence is to be, at most, 
a = 1 % suboptimal with a confi dence of d = 99.9 %, 
one would need to generate f 688N ³ random input 

Algorithm 1 NMPC via Random Shooting

INPUT: Current state measurement x(t), maximal

number Nf of feasible sequences to check.

OUTPUT: Sub-optimal, but feasible control sequence 

{u0, …, uN–1}.

1. Initialization: Jbest = , Ubest = , nf = 0

2. while nf < Nf do

3. Set x0 = x(t), J = 0, and feasible = true. 

4. for j = 0, …, N – 1 do

5. Pick a random control input ju Î  .

6. if Îjx   (and possibly 1-- Îj ju u  ) then

7. Update ( )j jx ,uJ J= +  .

8. Calculate xj+1 = f(xj, uj).

9. else

10. Set feasible = false and break.

11. end if

12. end for

13. if feasible = true and ÎNx   then

14. Update ( )N NJ J x= +  .

15. Increment nf = nf + 1.

16. if J < Jbest then

17.

Update Jbest = J and

store Ubest = {u0, …, uN–1}
as the so-far best solution.

18. end if

19. end if

20. end while

21. return Ubest as the best feasible control sequence.

sequences. Unfortunately, for generic non-convex 
problems, no such hard bound on the number 
of samples can be given. Nevertheless, Lemma 
2.1  provides at least an indicator on the required 
number of samples.
It is also worth noting that random shooting in 
particular, and stochastic methods in general, 
are ill-suited to cope with NMPC problems with 
equality constraints, with two exceptions. First, 
linear equality constraints, such as uj = uj+1 which 
are often used as move-blocking constraints, can be 
easily eliminated from the problem by projecting 
them onto their respective null spaces (Boyd and 
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Vandenberghe, 2004). The second exception are 
nonlinear equality constraints due to the prediction 
equation in (2b). Note that in the proposed random 
shooting method (2b) is not treated as a constraint. 
Instead, it is used to directly calculate the state 
predictions {x0, …, xN} in Step 8. Therefore the only 
practical limitation for Alg. 1  to work properly is 
that the constraint sets , ,    are either fully 
dimensional, or they contain just linear equalities.

3. Experimental

We co nsider a continuous stirred tank reactor 
(CSTR) in which a fast, isothermal, liquid phase, 
multi-component chemical reaction  2  A C B  
takes place (Fissore, 2008). The continous-time 
nonlinear dynamical model of the reactor is given 
by

 ( ) 2
A 1 A ,feed A 2 C,A

F
c k c c c k c

V
= - + - +  (10)

 2
B B 3 C,

F
c c k c

V
= - +  (11)

 ( ) 2
C 1 A C 2 3 C ,

F
c k c c k k c u

V
= - - + +  (12)

with the state vector x = [cA, cB, cC]T consisting of the 
concentrations. The objective is to keep the concen-
tration of all compounds on their respective steady-
state levels by manipulating the molar feed rate 
of component C, represented by the input signal 
u. The model parameters, as reported in (Fissore, 
2008), are: k1 = 1.0 m3 mol–1 s–1, k2 = 3.0 m3 mol–1 s–1, 
k3 = 5.0 m3 mol–1 s–1, F = 3 m3 s–1, V = 3 m3 and cA,feed = 
2 mol m–3. The desired steady state is given by cA,S = 
2.18 mol m–3, cB,S = 3.93 mol m–3, cC,S = 0.87 mol m–3 
and uS = 5 mol s–1.
First, the system in (5) was discretized using a 
sampling time of  = 0.1  s using a forward Euler 
discretization. Subsequently, the NMPC problem 
(2) was formulated with prediction horizon N = 5, 
and penalty matrices P = 100 · I3×3, Q = 10 · I3×3, 
R = 0.05 in (3) and (4). Moreover, a slew-rate penalty 
of the form 2

1j j Du u --   with D = 2 was also added 
to the stage cost to achieve a smooth control action 
that avoids abrupt changes. Control inputs were 
constrained by 13.5 6.5 mol su -£ £ . To amplify 
the ability of NMPC to deal with constraints, we 
have also added a slew-rate constraint of the form 
–1 £ u(t) – u(t – ) £ 1, which can be considered 
as a rate limit of the actuator. Finally, all states are 
required to be non-negative, i.e., cA ³ 0, cB  ³ 0, 
cC ³ 0. To make the problem more challenging, we 
have also included an artifi cial constraint 0.75 £ cC 
£ 1.00 mol m–3.

4. Results and discussion

To illustrate the perform ance of the random 
shooting method, represented by Alg. 1, we have 
conducted a closed-loop simulation where the 
states were initialized to their respective steady-
state inputs. Then, at time instants t = 0.5 and t = 4 
seconds, disturbances of 2 mol m3 and –1.5 mol m3 
were added to the second state, respectively. Two 
simulations were performed, one where the control 
inputs were selected by solving the NMPC problem 
(2) to its global optimum at every sampling instant 
using the global solver BARON (which is one of the 
best commercially available nonlinear solver), and 
the other one where the inputs were determined by 
Alg. 1 with Nf = 1000 random control sequences.
The time profi les of the CSTR are shown in Fig. 1. 
As can be observed, the differences between the 
optimal solution and the sub-optimal control ac-
tions calculated by Alg. 1 are negligible. Moreover, 
as can be seen from Figs. 1(c) and 1(d), even the 
random shooting-based NMPC controller provides 
satisfaction of hard constraints on system states, 
control inputs, as well as on its slew rate, defi ned as 
u(t) – u(t – ). We remark that the state constraints 
in Fig. 1(c) were not hit because the control action is 
already saturated, as can be seen in Fig. 1(d).
It took 270 milliseconds on average to solve the 
NMPC problem using BARON to global optimal-
ity, exceeding the sampling time  = 0.1 seconds. 
Therefore, optimal NMPC would not be suitable 
for a real-time implementation. Alg. 1, on the other 
hand, only took 0.4 milliseconds, on average. There-
fore, the proposed random shooting approach is 675 
times faster than optimal NMPC and is thus well 
suited for real-time NMPC. All computations were 
done on a 3.5 GHz CPU with 16 GB of RAM using 
Matlab 2017b.
Naturally, the control inputs generated by Alg. 1 are 
sub-optimal. However, as can be seen in Fig. 1, 
the sub-optimality is low. To quantify the loss of 
optimality, we have calculated the discrete-time ver-
sion of the integrated squared error (ISE) criterion 
defi ned as

,

where tsim = 8 s is the length of the simulation win-
dow, x(t) is the state vector at time instant t, and xS 
is the desired steady-state of the reactor. Moreover, 
the overal consumption of the input feed, given in 
mol, was computed by

,

where  is the sampling time. Judging by the ISE 
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criterion, the random-shooting NMPC controller 
was worse just by 1.5 % compared to the globally 
optimal NMPC solution. The total consumption 
of the input stream was 40.2456 mol for the opti-
mal NMPC controller versus 40.3412 mol for the 
random-shooting approach, a sub-optimality of just 
0.3 %. We remark that sub-optimality can be fur-
ther reduced by increasing the number of random 
samples Nf in Alg. 1 at the expense of an increased 
runtime. In our experience, the runtime scales 
linearly with Nf.

5. Conclusions

We have proposed to solve non-convex nonlinear 
model predictive control pro blems using a random 

shooting method where control inputs are selected 
at random. Despite the control inputs being sub-
optimal, the algorithm guarantees that they are at 
least feasible, thus maintain recursive feasibility 
and closed-loop stability. The procedure explicitly 
exploits the specifi c structure of the NMPC prob-
lem in (2) as to simplify the calculations. Specifi -
cally, the algorithm only involves forward-in-time 
simulations of the nonlinear dynamics, followed 
by checking constraints and calculating the value 
of the performance index. Therefore the proce-
dure is not just fast, but very versatile as well as it 
assumes no regularity conditions. By means of a 
motivating case study we have illustrated that the 
random shooting approach to NMPC indeed offers 
a signifi cant reduction of the calculation time while 

 a) Concentration cA(t). b) Concentration with disturbances at time
  t = 0.4 and t = 4 seconds.

 c) Concentration cC(t) with associated constraints. d) Control input u(t) and its slew rate
  u(t) – u(t – ), together with respective constraints.

Fig. 1. Time profi les of concentrations cA, cB, cC and the control input u for the CSTR example.
Solid lines represent profi les under the optimal NMPC feedback law. Dashed lines are profi les

under the sub-optimal random-shooting approach of Alg. 1. Dotted black lines represent constraints.
We remind that the steady-state values to which the CSTR should be controlled are

cA,S = 2.18 mol m–3, cB,S = 3.39 mol m–3, cC,S = 0.87 mol m–3, uS = 5 mol s–1.
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featuring just a small sub-optimality. Therefore it 
is well suited to implement nonlinear MPC in real 
time.
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