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Abstract: Let G be a molecular graph, the eccentric connectivity index of G is defined as c(G) = ∑u ∈V(G)deg(u)·ecc(u), 
where deg(u) denotes the degree of vertex u and ecc(u) is the largest distance between u and any other vertex v 
of G, namely, eccentricity of u. In this study, we present exact expressions for the eccentric connectivity index 
of two infinite classes of nanostar dendrimers.
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Introduction

Molecular descriptors are playing significant role in 
chemistry, pharmacology, etc. Among them, topo-
logical indices have a prominent place (Todeschini 
et al., 2000). There are numerous of topological 
descriptors that have found some applications in 
theoretical chemistry, especially in QSPR/QSAR 
research.
More recently, a new topological index, eccentric 
connectivity index, has been investigated. This topo-
logical model has been shown to give a high degree 
of predictability of pharmaceutical properties, 
and may provide leads for the development of 
safe and potent anti-HIV compounds. We encour-
age readers to consult papers (Dureja et al., 2005, 
2006, 2009; Kumar et al., 2006, 2007; Lather et 
al., 2005; Sardana et al., 2001, 2002; Sharma et al., 
1997) for some applications and papers (Morgan 
et al., 2010; Ilic et al., 2001; Xu X; Zhou et al., 
2010; Ashrafi et al., 2011) for the mathematical 
properties of this topological index.
Dendrimers are highly branched macromolecules. 
They are being investigated for possible uses in 
nanotechnology, gene therapy, and other fields. 
Each dendrimer consists of a multifunctional core 
molecule with a dendritic wedge attached to each 
functional site. The core molecule without sur-
rounding dendrons is usually referred to as zeros 
generation. Each successive repeat unit along all 
branches forms the next generation, 1st generation 
and 2nd generation and so on until the terminating 
generation. The topological study of these macro-
molecules is the aim of following articles, see (Kho-
ramdel et al., 2008; Ashrafi et al., 2008; Karbasioun 
et al., 2009; Yousefi-Azari et al., 2008) for details.
Now, we introduce some notation and terminology. 
Let G be a graph with vertex set V(G) and edge set 
E(G). Let deg(u) denote the degree of the vertex 
u in G. If deg(u) = 1, then u is said to be a pendent 

vertex. An edge incident to a pendent vertex is said 
to be a pendent edge. For two vertices u and v in V(G), 
we denote by d(u, v) the distance between u and v, 
i.e., the length of the shortest path connecting u 
and v. The eccentricity of a vertex u in V(G), denoted 
by ecc(u), is defined to be
ecc(u) = max{d(u, v)v ∈ V(G)}
The diameter of a graph G is defined to be 
max{ecc(u)u ∈ V(G)}. The eccentric connectivity 
index, c(G), of a graph G is defined as
c(G) = ∑u ∈V(G)deg(u)·ecc(u)
where deg(u) is the the degree of a vertex u and 
ecc(u) is it’s eccentricity.
The second author of this paper in some joint 
works computed some toplological indices of some 
molecular graphs related to eccentricity (Alaeiyan et 
al., 2013, 2015; Nejati et al., 2014, 2015). Yarahmadi 
investigated some topological indices of nanostar 
dendrimers in (Yarahmadi et al., 2010, 2011) and 
Ashrafi. A. R. in (Ashrafi et al., 2012) calculated 
eccentric connectivity index of a class of nanostar 
dendrimers. Also in (Nilanjan et al., 2016) Ni-
lanjan presented exact expressions for the F-index 
and F-polynomial of six infinite classes of nanostar 
dendrimers. In this paper we computed the ec-
centric connectivity index of two infinite classes of 
nanostar dendrimers. Their structures are given in 
Figs. 1, 3.

Results

Suppose Dn denotes the molecular graph of a den-
drimer with exactly generations depicted in Fig. 1 
where n ≥ 1. The total number of vertices and edges 
of Dn are calculated as 57 × 2n – 1 – 38 and 33 × 2n – 45 
respectively. In the following theorem we calculate 
the eccentric connectivity index of Dn.
Theorem 1. The eccentric connectivity index of Dn 
is computed as
c(Dn) = (1188 × 2n – 810)n – 1485 × 2n + 1665.
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Proof . Considering Fig. 2 and Table. 1, it can be 
seen that, we have 9n-4 types of vertices in Dn, based 
on their eccentricities. We have 3 × 2n – 1 numbers 
of vertices of type1 with maximum eccentric 
connectivity equals to 18n-10 (red vertices). The 
number of vertices of type 2, 3 is 3 × 2n and their 
eccentricities are 18n-11 and 18n-12 repectively. 
Also we have 3 × 2n – 1 numbers of vertices of type 
4 with eccentric connectivity equals to 18n-13 and 
so it continues until we have three vertices of type 
9n-5 with eccentric connectivity equals to 9n-4 and 
finally there is a vertex of type 9n-4 with minimum 
eccentric connectivity equals to 9n-5 (blue vertex). 
It is clear that for any vertex u in Dn, deg(u) = 2 or 
deg(u) = 3 (see Table. 1). Therefore we have
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Now with simplification in MATLAB software 
(Matlab et al., 2012) we have

( ) ( )1188 2 810  1485 2 1665.c n n
nD nx = ´ - - ´ +

Then this proof is completed.
Now we consider another class of dendrimer, de-
noted as NS5(n) denotes the molecular graph of a 
dendrimer with exactly n generations depicted in 
Fig. 3 where n ≥ 1.
In the following theorem we calculate the eccentric 
connectivity index of NS5(n).
Theorem 2. The eccentric connectivity index of 
NS5(n) is computed as

( )( ) ( )5 1200 2 270  2544 2 1275.c n nNS n nx = ´ + + ´ +

Proof . Considering Fig. 4 and Table. 2, it can 
be seen that, we have 5n+14 types of vertices in 

Fig. 1. The nanostar dendrimer Dn(n = 2).

Fig. 2. The eccentricities in a third of D2.
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NS5(n), based on their eccentricities. We have 
9 × 2n numbers of vertices of type1 with maxi-
mum eccentric connectivity equals to 10n+28 (red 
vertices). Also we have 3 × 2n numbers of vertices 
of types 2, 3 with eccentric connectivity equals to 
10n+27 and 10n+26 respectively. The number of 
vertices of type 4 is 3 × 2n and their eccentricity is 
10n+25 and so it continues until we have six vertices 
of type 5n+13 with eccentric connec tivity equals to 
5n+16 and finally there are three vertices of type 
5n+14 with minimum eccentric connectivity equals 
to 5n+15 (blue vertices). It is clear that for any vertex 
u in NS5(n), deg(u) = 1 or deg(u) = 2 or deg(u) = 3. 
(See Table. 2). Therefore we have

Table 1. Types of vertices in Dn.

Types 
of Vertices

Num ecc(u) deg(u)

1 2n – 1 × 3 18n – 10 2

2 2n × 3 18n – 11 2

3 2n × 3 18n – 12 2

4 2n – 1 × 3 18n – 13 3

5 2n – 2 × 3 18n – 14 3

6 2n – 2 × 3 18n – 15 3

... ... … ...

9n – 6 6 9n – 3 2

9n – 5 3 9n – 4 3

9n – 4 1 9n – 5 3

Fig. 3 Polymer dendrimer NS5(n)(n = 2).
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Now with simplification in MATLAB software 
(Matlab et al,. 2012) we have

( )( ) ( )5 1200 2 270  2544 2 1275.c n nNS n nx = ´ + + ´ +

Then this proof is completed.

Table 2. Types of vertices in NS5(n).

Types 
of Vertices

Num ecc(u) deg(u)

1 3 × 2n + 1 10n + 28 1

1 3 × 2n 10n + 28 2

2 3 × 2n + 1 10n + 27 3

3 3 × 2n + 1 10n + 26 2

4 3 × 2n 10n + 25 3

5 3 × 2n 10n + 24 2

... ... ... ...

5n + 11 3 5n + 18 3

5n + 12 3 5n + 17 2

5n + 12 3 5n + 17 1

5n + 13 3 5n + 16 3

5n + 13 3 5n + 16 2

5n + 14 3 5n + 15 3

Conclusions

The eccentric connectivity index has been em-
ployed successfully for the development of nu-
merous mathematical models for the prediction of 
biological activities of diverse nature. Dendrimers 
are large and complex molecules with well tailored 
chemical structures. In this paper, exact formulas 
for the eccentric connectivity index of two infinite 
classes of nanostar dendrimers are given. It would 
be interesting for future study to investigate other 
topological indices such as edge version of eccen-
tric connectivity index of these nanostar dendrim-
ers.
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Fig. 4 The eccentricities in a third of NS5(2).
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