Raman and infrared spectra, conformations and *ab initio* calculations of 3-methoxymethylene-2,4-pentanedione

Anton Gatial^a, Viktor Milata^b, Nadežda Prónayová^c, Klaus Herzog^d, Reiner Salzer^d

 ^aInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
^bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
^cDepartment of NMR Spectroscopy and Mass Spectroscopy, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
^dInstitute of Analytical Chemistry, Technical University Dresden, 01062 Dresden, Germany anton.gatial@stuba.sk

Abstract: The IR (4000–400 cm⁻¹) and Raman (4000–50 cm⁻¹) spectra of 3-methoxymethylene-2,4-pentanedione $[H_3C-O-CH=C(COCH_3)_2]$ as a liquid and solutes in various solvents of different polarity have been recorded at ambient temperature. Additional IR and Raman spectra were obtained for amorphous and crystalline solid state at low temperature. The vibrational spectra revealed that the compound exists at least in two dominant conformers of different polarity and that the conformer present in the solid phase is less polar. NMR spectra in various solvents at different temperatures were also obtained.

The compound can exist in several conformers due to the rotation around O—C= and both =C—C bonds with planar or nonplanar arrangements of heavy atoms. *Ab initio* MP2 and DFT calculations using a wide scale of basis sets were carried out. According to these calculations six conformational structures of the eight theoretically possible conformational structures with the methoxy group oriented as *anti* or *syn* and carbonyl groups oriented as *Z* or *E* towards the C=C double bond were obtained at potential energy surface. It has been shown that the conformers with the *E* orientations of both acetyl groups are not the stable ones. The calculated *ab initio* MP2 and DFT energies of all found conformers in vacuum suggest the most stable *ZEa* conformer where *Z* and *E* regard to the *trans* and *cis* acetyl groups, respectively and *a* denotes the orientation of the methoxy group. The *EZa* conformer was calculated as the second most stable one with the energy by at least 10 kJ mol⁻¹ higher. Corrections of the relative energies of single conformers obtained in vacuum on the polar surroundings were done by including the solvent effect into the calculations using IEF Polarizable Continuum Model. Assignments of the vibrational spectra for the studied compound were made with the aid of normal coordinate

Assignments of the vibrational spectra for the studied compound were made with the aid of normal coordinate calculations employing scaled *ab initio* force field. The scaled *ab initio* frequencies as well as calculated energies indicate that *ZEa* is the conformer present in the solid phase.

Keywords: Raman and Infrared spectra, NMR spectra, conformational analysis, alkoxymethylenes and diacetylethenes, *ab initio* MP2 and B3LYP calculations.

Introduction

Alkoxymethylenes of general formula R—O—CH= =CXY, where R are alkyl or (hetero)aryl electrondonor groups and X and Y are electron-withdrawing groups, represent simple push-pull compounds. As relatively easy accessible and highly reactive compounds they are very important in a number of syntheses. Their reactions with aliphatic, aromatic or heteroatomic amines give the corresponding N-(un) substituted aminomethylene compounds which are used as starting materials for many pharmaceuticals, dyes, polymers and other products (Cook, 1969; Dyke, 1973; Albrecht, 1977; Bouzard, 1990).

The studied 3-methoxymethylene-2,4-pentanedione $[H_3C_O_CH=C(COCH_3)_2]$ (MMP) has $R=CH_3$ and $X=Y=COCH_3$. The first conformational pos-

sibility of MMP is given by the rotation around the O-C = single bond with the methyl group in the anti or syn orientation towards the C=C double bond. The simplest model for such conformational possibility is methyl vinyl ether as a parent compound for MMP and its conformers are at Fig. 1. Methyl vinyl ether has been widely studied by vibrational spectroscopy (Owen, 1964; Ignatyev, 1981; Cadioli, 1982), electron diffraction (Owen, 1970, Samdal, 1975, Pyckhout, 1983), microwave spectroscopy (Cahill, 1968) and infrared matrix isolation spectroscopy (Beech, 1985). These studies have shown that methyl vinyl ether in the fluid phases exists in two conformers: the less polar and planar syn conformer is more stable and the less stable one is the more polar and probably nonplanar anti conformer. The enthalpy difference between the conformers was

found to be 4.8 ± 1.0 kJ mol⁻¹ in the gas phase and 2.8 ± 0.8 kJ mol⁻¹ in 1,1,2-trichloroethane (Owen, 1964). In the liquid phase the enthalpy differences of 6.0 ± 0.7 kJ mol⁻¹ and 6.2 ± 0.5 kJ mol⁻¹ were obtained, respectively (Cadioli, 1982; Sakakibara, 1976). From the matrix isolation study the enthalpy difference of 6.6 ± 0.4 kJ mol⁻¹ was measured (Beech, 1985).

The similar conclusion has been done from the conformational study of 2-methoxypropene $[H_3C-O-C(CH_3)=CH_2]$ by vibrational spectroscopy (Diallo, 1981; Gallinella, 1983). The spectra revealed the presence of two conformers with the enthalpy difference of 3.6 kJ mol⁻¹ in the liquid state and it has been found from the vapour phase spectra that the more stable conformer has a planar structure and a *syn* configuration of heavy atoms.

On the other side the substitution of both ending ethylene hydrogens by some electron-withdrawing groups support the *anti* orientation of the methoxy group as it has been shown by vibrational and conformational studies of methoxymethylene-propanedinitrile $[H_3C-O-CH=C(CN)_2]$ and 1-methoxyethylidene-propanedinitrile $[H_3C-O-C(CH_3)=C(CN)_2]$ (Gatial, 1997, Gatial, 2004).

The additional conformational possibility for MMP is given by the rotation of both acetyl groups around the =C—C single bond. The simplest compound demonstrating the conformational possibility of the vinyl and acetyl groups is methyl vinyl ketone H₂C=CH—COCH₃ (Bowles, 1969, Durig, 1981, de Smedt, 1989). For its two conformers all heavy atoms are located in a plane and are denoted as the *s*-trans (*E*) and *s*-cis (*Z*) with respect to the orientation of the two C=C and C=O double bonds (Fig. 2). The *s*-trans conformer is more stable by 2.4 ± 0.2 kJ mol⁻¹ (Bowles, 1969) and 2.1 kJ mol⁻¹ (Durig, 1981) in the gas and liquid phases, respectively, and by 1.9 ± 0.1 kJ mol⁻¹ in the CS₂ solution (de Smedt, 1989).

The conformational possibilities of MMP are given by the rotation of both acetyl groups and the stable conformers can have the orientation of the carbonyl oxygen towards or away from the C=C double bond marked as Z or E orientations. Therefore, MMP can have theoretically four orientations of both acetyl groups ZZ, ZE, EZ and EE where the first letter expresses the orientation of the *trans* acetyl group and the second one the orientation of the *cis* acetyl group. Additionally the third letters a or s will denote the orientation of methoxy group. Therefore, MMP can theoretically exist as ZZa, ZEa, EZa, EEa, ZZs, ZEs, EZs and EEs conformers. The conformations of both acetyl groups strongly depend on the possibility to create stabilizing intramolecular hydrogen bond between the electron-donor group, e.g. amino group H₂N—(Gróf, 2007) or alkylamino group R—NH— (Gatial, 2015) and carbonyl of the cis acetyl group. The conformers with such bond belong to the most stable ones. On the other side for compounds without the possibility to create such an intramolecular hydrogen bond, e.g. compounds with dialkylamino group R^1R^2N — (Gatial, 2011) or alkoxy group R—O— (Gatial, 1999), also other conformers can belong to the most stable ones.

Planarity favoured by the conjugation of studied alkoxymethylenes can often be difficult to achieved for steric reasons due to the substituent size of both the X, Y groups or the size of the R—O— alkoxy group. Therefore for MMP one or both carbonyls may lie out of ethene plane, or alternatively the whole molecule may twist along the axis of the carbon double bond. Due to the steric effects a nonplanar gauche conformation of acetyl group can result from the rotation around the =C-C single bond from either the s-trans or s-cis positions. The three double bonds of MMP represent a cross-conjugated system. In hydrocarbon frameworks the simplest cross-conjugated molecule is 3-methylene-1,4-pentanediene (Almenningen, 1988) where electron diffraction, in agreement with the *ab initio* calculations, revealed that the most stable conformer has two double bonds coplanar with the s-trans arrangement and the third one is twisted from s-cis positions by 40 degrees.

Experimental and computational details

The purity and identity of the compound were checked by mass and NMR spectroscopy. Mid-IR

Fig. 2. Conformers of methyl vinyl ketone.

spectra in the 4000-400 cm⁻¹ region were recorded on Bruker model IFS 88 and on Nicolet model NEXUS 470 FT-IR spectrometers at room temperature. The solution IR spectra in chloroform and acetonitrile were measured in a Specac cell equipped with KBr windows. Cryostats cooled with liquid nitrogen and with windows of CsI and polyethylene were used in solid IR measurements. Raman spectra in the 4000-50 cm⁻¹ region were measured on Bruker RFS 100 Raman spectrometer with Nd³⁺: YAG laser at the wavelength of 1064 nm. The Raman spectra of the solutions were obtained at room temperature. A liquid capillary of 3 mm inner diameter surrounded by a Dewar and cooled by a flow of cold nitrogen gas was used for Raman solid state measurements.

NMR spectroscopy was performed in the solutions of dimethylsulfoxide (DMSO) and chloroform (CDCl₃) in order to confirm the identity of the sample. ¹H NMR and ¹³C NMR spectra were recorded at room temperature with both Varian VXR-300 and INOVA 600 spectrometers. The ¹³C and ¹H NMR spectra in DMSO at room temperature and in chloroform and acetone, cooled to -60 and -80 °C, respectively, were run with a Varian VXR-300 spectrometer and no evidences of separate spectra due to restricted O—C= or =C—C rotations were obtained.

Ab initio MP2 (Møller, 1934) and DFT B3LYP (Becke, 1988; Lee et al., 1988; Becke, 1993) computations were performed using the Gaussian03 (Frisch et al., 2003) and Gaussian09 (Frisch et al., 2009) program packages. Standard basis sets 6-31G**, 6-311G**, 6-311++G**, cc-pVDZ, aug-cc-pVDZ and cc-pVTZ were used for both methods. Solvent effects in the solvents of different polarity were approximated by Integral Equation Formalism Polarizable Continuum Model (IEF PCM) (Cossi, 1996; Mennucci, 1997) and a full conformational analysis of the MMP was performed. A vibrational analysis was used to confirm that the optimal geometry corresponds to the energy minimum (no imaginary vibrations) and to obtain the vibrational spectra.

Results and discussion

Quantum-chemical calculations

In order to understand the conformational behavior of MMP and to interpret the experimental results we have supported our study by theoretical calculations. The numbering and structure of the studied compound is depicted in Fig. 3. In the first step we have tried to find all stable conformers from the eight theoretically possible ZEa, ZEs, ZZa, ZZs, EZa, EZs, EEa and EEs ones. Table 1 and Table 2 summarize the calculated MP2 and DFT B3LYP relative energies of MMP conformers as well as their dipole moments for an isolated molecule (in vacuum) in several basis sets. The calculated energies for all methods and basis sets show that the most stable conformer is ZEa.

According to these calculations all other found conformers have much higher energy in vacuum and their appearance in a liquid phase at room temperature seems not probable. However on the other side the calculated dipole moments of the found conformers have a broad range and therefore the appearance of the next possible conformers in polar solutions can be expected. Some calculated geometrical parameters at the *ab initio* MP2 level in $6-311++G^{**}$ basis set are collected in Table 3.

The relative energies of single conformers obtained in vacuum were corrected by including solvent effect into the calculations using IEF Polarizable Continuum Model (PCM) at *ab initio* MP2 levels in 6-311++G** and cc-pVTZ basis sets. The energy differences between the conformers of MMP are collected in Tables 4a and 4b and depicted in

Fig. 3. Structure and numbering of atoms in MMP for ZEa conformer.

Conformer	MP2								
Conformer	6-31G**	6-311G**	6-311++G**	cc-pVDZ	aug-cc-pVDZ	cc-pVTZ			
ZEa	0.00 (4.65)	0.00 (4.61)	0.00 (4.98)	0.00 (4.50)	0.00 (4.95)	0.00 (4.74)			
ZEs	22.98 (3.11)	20.99 (3.00)	18.42 (3.28)	а	а	а			
ZZa	20.34 (1.47)	18.55 (1.57)	14.45 (1.63)	21.72 (1.41)	15.82 (1.76)	18.07 (1.44)			
ZZs	22.67 (2.79)	21.06 (2.69)	16.89 (2.58)	23.51 (2.67)	13.97 (2.92)	19.42 (2.69)			
EZa	14.34 (5.68)	12.47 (5.66)	7.84 (5.93)	16.12 (5.21)	8.14 (6.11)	10.57 (5.78)			
EZs	14.93 (3.44)	14.40 (3.34)	10.91 (3.62)	15.83 (3.36)	6.58(3.88)	11.38 (3.69)			
EEa	а	а	а	а	а	а			
EEs	а	а	а	а	а	а			

Tab. 1. Calculated MP2 relative energies including ZPE correction (kJ mol⁻¹) of MMP stable conformers in different basis sets in vacuum. Calculated dipole moments (in Debye) are in parentheses.

a – conformer not found.

Tab. 2. Calculated DFT B3LYP relative energies including ZPE correction (kJ mol⁻¹) of MMP stable conformers in different basis sets in vacuum. Calculated dipole moments (in Debye) are in parentheses.

Conformer	B3LYP								
Conformer	6-31G**	6-311G**	6-311++G**	cc-pVDZ	aug-cc-pVDZ	cc-pVTZ			
ZEa	0.00 (4.96)	0.00 (5.02)	0.00 (5.22)	0.00 (4.87)	0.00 (5.15)	0.00 (5.02)			
ZEs	30.41 (3.59)	30.33 (3.59)	27.15 (3.76)	32.81 (3.51)	а	а			
ZZa	22.74 (1.37)	21.86 (1.61)	17.11 (1.90)	24.83 (1.37)	16.52 (1.58)	17.98 (1.58)			
ZZs	28.09 (2.68)	27.96 (2.71)	24.86 (2.84)	30.91 (2.61)	23.79 (2.79)	26.23 (2.69)			
EZa	18.44 (5.60)	17.30 (5.85)	12.33 (6.25)	19.40 (5.42)	11.06 (6.14)	12.15 (5.91)			
EZs	20.60 (3.44)	20.56 (3.56)	17.25 (3.79)	22.23 (3.36)	16.34 (3.75)	18.16 (3.63)			
EEa	а	а	а	а	а	а			
EEs	а	а	а	а	а	а			

a – conformer not found.

Figs. 4 and 5. From these results we can see that *ZEa* conformer remains the most stable one also in very polar surroundings. As the second most stable

Fig. 5. Energy difference between isomers and conformers of MMP as a function of relative permittivity of surroundings calculated by IEF PCM model at *ab initio* MP2 level with cc-pVTZ basis set.

conformer remains EZa one but its energy drops down from the values of $8-10 \text{ kJ mol}^{-1}$ for vacuum to the value of about $2-0 \text{ kJ mol}^{-1}$ in very polar sur-

Coordinate ^a	ZEa	ZEs	ZZa	ZZs	EZa	EZs
Bonds (Å)						
$C_1 = C_2$	1.360	1.358	1.356	1.362	1.354	1.364
$C_2 - O_3$	1.339	1.342	1.336	1.334	1.343	1.334
$O_3 - C_4$	1.434	1.433	1.431	1.430	1.429	1.432
$C_1 - C_9$	1.506	1.505	1.491	1.501	1.477	1.486
$C_1 - C_{10}$	1.489	1.501	1.500	1.497	1.512	1.503
$C_9 = O_{11}$	1.226	1.223	1.226	1.224	1.229	1.229
$C_{10} = O_{12}$	1.227	1.223	1.222	1.225	1.219	1.224
$C_9 - C_{13}$	1.512	1.514	1.517	1.517	1.519	1.519
C_{10} — C_{14}	1.514	1.516	1.521	1.517	1.508	1.513
Angles (°)						
$C_1 = C_2 - O_3$	124.9	130.1	123.1	131.9	121.7	131.7
$C_1 = C_2 - H_5$	118.6	118.5	119.4	117.7	122.3	119.4
$C_2 - O_3 - C_4$	114.2	118.4	114.6	119.4	114.6	120.1
$C_2 = C_1 - C_9$	114.1	115.8	116.9	114.3	122.1	118.8
$C_2 = C_1 - C_{10}$	124.8	125.7	120.6	127.4	119.9	125.6
$C_1 - C_9 = O_{11}$	120.6	121.8	122.1	122.2	119.8	119.5
$C_1 - C_{10} = O_{12}$	119.8	122.0	121.5	122.4	120.4	120.4
$C_1 - C_9 - C_{13}$	118.5	116.8	116.9	116.3	119.4	120.2
$C_1 - C_{10} - C_{14}$	119.4	115.8	117.7	116.2	116.0	118.1
Dihedral angles (°)						
$C_1 = C_2 - O_3 - C_4$	-174.8	20.3	-172.8	7.7	-164.4	10.5
$O_3 - C_2 = C_1 - C_9$	-178.9	-174.3	-178.6	-178.8	-176.3	-175.7
$O_3 - C_2 = C_1 - C_{10}$	0.8	8.9	3.1	7.1	4.5	10.1
$H_5 - C_2 = C_1 - C_9$	-1.1	4.3	-1.1	-0.7	1.3	2.3
$H_5 - C_2 = C_1 - C_{10}$	178.6	-172.4	-179.4	-174.7	-177.9	-171.9
$C_2 = C_1 - C_9 = O_{11}$	22.3	-0.7	12.9	27.4	180.0	-174.1
$C_2 = C_1 - C_{10} = O_{12}$	-158.9	-115.5	53.9	57.2	68.7	51.4
$C_2 = C_1 - C_9 - C_{13}$	-155.1	179.2	-165.4	-147.8	-0.7	5.6
$C_2 = C_1 - C_{10} - C_{14}$	20.9	70.3	-124.7	-121.6	-110.4	-129.4

Tab. 3. Some geometric parameters of stable MMP conformers calculated at *ab initio* MP2 level with 6-311++G** basis set in vacuum.

^aNumbering of atoms according to Fig. 3.

roundings in DMSO. Therefore in polar solutions the presence of the *EZa* conformer is possible.

Due to problems with finding some conformers with the EE orientation of both acetyl groups we have studied the dependence of the potential energy for the transition between ZEa and EEa conformers by the rotation of the *trans* acetyl group for several fixed dihedral angles of the *cis* acetyl group. This dependence is depicted at Fig. 6. It is clear that EE orientation of both acetyl groups has much higher energy and it is evident that this dependence for the cis acetyl group being in the plane of ethylene group (dihedral angle 180.0 °) has no minimum. For fixed dihedral angles of the cis acetyl group outside of the plane of ethylene group the potential energy dependence has otherwise a minimum on the opposite side of the plane of ethylene group but after the optimization of all geometrical parameters always one of acetyl groups turned into the Z position. A similar situation occurs when the *trans* acetyl group is fixed and the *cis* acetyl group rotates (Fig. 7).

Fig. 6. Dependence of potential energy of MMP on the dihedral angle of *trans* acetyl group for fixed dihedral angle of *cis* acetyl group at *ab initio* MP2 level with cc-pVDZ basis set.

Tab. 4a. Calculated MP2 relative energies in 6-311++G** basis set (kJ mol⁻¹) for MMP conformers in the gas phase $(\epsilon_r = 1)$, in CCl₄ ($\epsilon_r = 2.2$), in chloroform ($\epsilon_r = 4.7$), in dichloromethane ($\epsilon_r = 8.9$), in acetone ($\epsilon_r = 20.5$), in acetonitrile ($\epsilon_r = 35.7$) and in DMSO ($\epsilon_r = 46.8$) solutions according to IEF PCM solvent model.

Conformer			Ν	MP2/6-311++G*	**		
Conformer	$\varepsilon_r = 1.0$	$\epsilon_r = 2.2$	$\epsilon_r = 4.7$	$\epsilon_r = 8.9$	$\epsilon_r = 20.5$	$\varepsilon_r = 35.7$	$\epsilon_r = 46.8$
ZEa	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZEs	18.42	19.66	20.55	20.92	а	а	а
ZZa	14.45	13.30	12.48	11.94	11.44	11.26	11.20
ZZs	16.89	18.17	18.86	19.09	19.19	19.24	19.25
EZa	7.85	4.92	2.76	1.17	-0.04	-0.44	-0.57
EZs	10.91	11.58	12.09	12.16	11.96	11.85	11.80
EEa	а	а	а	а	а	а	а
EEs	а	а	а	а	а	а	а

a – conformer not found.

Tab. 4b. Calculated MP2 relative energies in cc-pVTZ basis set (kJ mol⁻¹) for MMP conformers in the gas phase $(\varepsilon_r = 1)$, in CCl₄ ($\varepsilon_r = 2.2$), in chloroform ($\varepsilon_r = 4.7$), in dichloromethane ($\varepsilon_r = 8.9$), in acetone ($\varepsilon_r = 20.5$), in acetonitrile ($\varepsilon_r = 35.7$) and in DMSO ($\varepsilon_r = 46.8$) solutions according to IEF PCM solvent model.

Canfannan				cc-pVTZ			
Conformer	$\varepsilon_r = 1.0$	$\epsilon_r = 2.2$	$\epsilon_{\rm r} = 4.7$	$\epsilon_r = 8.9$	$\epsilon_r = 20.5$	$\varepsilon_r = 35.7$	$\epsilon_r = 46.8$
ZEa	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZEs	а	а	а	а	а	а	а
ZZa	18.07	16.46	15.30	14.62	14.15	14.00	13.95
ZZs	19.42	20.48	20.98	21.24	21.38	21.43	21.50
EZa	10.57	7.88	5.55	4.14	3.00	2.54	2.39
EZs	11.38	12.43	12.40	12.45	12.25	12.14	12.12
EEa	а	а	а	а	а	а	а
EEs	а	а	а	а	а	а	а

a – conformer not found.

Fig. 8. Dependence of potential energy of MMP (in Hartree, related to the -497,0000 Hartree value) on relevant dihedral angles (in degrees) at *ab initio* MP2 level with cc-pVDZ basis set.

Therefore we can conclude that the *EE* orientation of both acetyl groups is not stable probably due to the charge repulsion of both carbonyl oxygens which disfavours the *EE* arrangement of both acetyl groups. To test such conclusion we have calculated the potential energy surface (PES) for fixed dihedral angles of both acetyl groups of MMP with the *anti* orientation of the methoxy group and results are depicted at Fig. 8. From the analysis of the PES we can see that the energy of the *EE* arrangement is the highest one and that the PES has not a global minimum for such an arrangement.

NMR spectra

The ¹H NMR spectra of MMP in chloroform and DMSO solutions are presented in Fig. 9. The comparison of the ¹³C NMR spectra of MMP in chloroform and DMSO solutions with the calculated NMR spectra at ab initio MP2 level with cc-pVTZ basis set using IEF PCM solvation model for the *ZEa* and *EZa* conformers are shown in Fig. 10. The hydrogen and carbon experimental chemical shifts are given in Table 5. We can observe in the ¹H NMR spectrum the signals of two acetyl methyl groups (at 2.1–2.4 ppm), the signals of methoxy groups (at 4.0 ppm) and the signals of the olefinic hydrogen (at 7.6–7.7 ppm). None of the mentioned observed hydrogen signals are split to indicate the

free rotation of the above groups at room temperature. The number of carbon resonances in chloroform (bottom) as well as in DMSO (top) spectrum in Fig. 10 corresponds to the presence of only one entity in both solutions. Such situation is also in the acetone solution at the temperature of -80 °C. This can imply that MMP exists in these solutions as only one conformer or that the coalescence temperature for the rotation around the O—C= or =C—C bonds is bellow this temperature. The middle spectrum compares the calculated resonances for *ZEa* and *EZa* conformers at MP2 level with cc-pVTZ basis set using IEF PCM solvation model with chloroform as a solvent.

Experimental resonances of C_1 and C_2 in the ethylenic group and of C_4 in the methoxy group are very similar in chloroform as well as in DMSO solution. On the other side the experimental C_9 and C_{10} carbonyl resonances and C_{13} and C_{14} methyl carbon resonances for both acetyl groups are more separated in DMSO solution. The calculated differences of chemical shifts of C_9 and C_{10} carbonyl resonances and C_{13} and C_{14} methyl carbons resonances in chloroform solution for *EZa* conformer are higher in comparison with the same ones for *ZEa* conformer (the middle spectrum at Fig. 10). This can indicate that the abundance of the more polar *EZa* conformer in the DMSO solution is higher than in the chloroform solution.

Fig. 9. ¹H NMR spectra of MMP in CDCl₃ (bottom) and in DMSO (top) at room temperature.

Fig. 10. ¹³C NMR spectra of MMP in CDCl₃ (bottom) and in DMSO (top) at room temperature. In the middle the calculated spectra for both *ZEa* and *EZa* confomers are depicted.

Tab. 5. Measured NMR spectral data of 3-methoxymethylene-2,4-pentanedione (MMP).

Carbon anostro	Chemical shifts (ppm)				
Carbon spectra	DMSO	CDCl_3			
>C=	122.74	122.44			
—CH=	166.41	167.01			
CH_3	63.25	63.75			
C=O	198.54	198.07			
C=O	195.45	196.95			
CH_3	31.63	32.10			
CH_3	27.51	29.04			
Hydrogen spectra					
CH_3	2.19	2.31			
CH_3	2.23	2.38			
OCH_3	4.00	4.04			
=С—Н	7.73	7.64			

Vibrational spectra

Since the sample has a small vapour pressure, only the measurements as a pure liquid and in solvents of different polarities at room temperature and in a solid phase at low temperature have been performed. The survey mid-infrared and Raman liquid and solid phase spectra of MMP are depicted in Fig. 11 and experimental frequencies are collected in Table 6. Disappearing of several bands from IR as well as Raman liquid phase spectra in comparison with the solid phase spectra support the assumption than MMP exists in the liquid phase as a mixture of at least two conformers. The comparison of the liquid phase Raman spectra of MMP with those measured in CCl_4 , chloroform, dichloromethane and acetonitrile solutions in the most significant 1775–1525 cm⁻¹ region, where the C=O and C=C double bond stretching vibrations can be expected, are shown in Figs. 12. These studies confirm the presence of at least two conformers with very different dipole moments in solutions of different polarity. The bands denoted with the asterisk increase their intensity in more polar solvents and disappeared in solid phase what means that less stable second conformer is more polar and that more stable less polar conformer in liquid phase is also present in the crystallized solid phase.

Experimental spectra in Figs. 13 and 14 are compared with the calculated ones for ZEa and EZa conformers at MP2 level with cc-pVTZ basis set. Calculated vibrational frequencies were scaled by the scale factor of 0.96 according to [Merrick, 2007] and calculated Raman scattering activities were recalculated on the Raman scattering cross sections which are proportional to the Raman intensities. For the depicting of the calculated spectra the Lorentzian band shape with the halfwidth of 4 cm⁻¹ for IR and Raman spectra has been used. The MP2/cc-pVTZ force field was transformed from Cartesian coordinates to a set of suitable internal coordinates and the potential energy distribution (PED) was calculated for each mode. The comparison of the calculated and observed vibration frequencies of MMP conformers and PED for ZEa conformer is in Table 7.

Fig. 11. IR (top) and Raman (bottom) spectra of MMP as a neat liquid (curve a) at room temperature and in the solid state (curve b). * denote bands vanishing in the solid phase.

Fig. 12. Raman spectra of MMP as a neat liquid (top solid line) and in solvents of different polarity at room temperature and in the solid state (bottom solid line). * denote bands vanishing in solid phase.

Three bands above 1580 cm⁻¹ therefore belong to the C=O and C=C stretching modes. The assignment of the C=O stretching modes for *ZEa* and *EZa* conformers is opposite according to the PED. Because for *ZEa* conformer the calculated higher frequency band at 1672 cm⁻¹ can be assigned to the C=O stretch vibration of the *trans* acetyl group with the Z orientation of C=O/C=C bonds (55 *trans* C=O s, 11 C=C s) and the lower frequency band at 1650 cm⁻¹ to the C=O stretch of the *cis* acetyl group with the *E* orientation of C=O/C=C bonds (72 *cis* C=O s), thus for *EZa* conformer the calculated higher frequency band at 1685 cm⁻¹ can be assigned to the C=O stretch vibration of the *cis* acetyl group with the *Z* orientation of C=O/C=C bonds (80 *cis* C=O s) and the lower frequency band at 1640 cm⁻¹ to the C=O stretch vibration of the *trans* acetyl group with the *E* orientation of C=O/ C=C bonds (75 *trans* C=O s). The C=C stretch vibrations were according to PED clearly calculated

Infra	ared	Ra	man	Interpretation		
Liquid	Solid	Liquid	Solid	ZEa	EZa	
3056 ^b vw. sh	3065 vw		3068 w	V1		
0000 111,011	3034 w		3033 m	v_{9}		
	3028 w		3029 m	v_3		
	3015 vw,sh		3017 w	ν_4		
3000 vw	3006 w	3004 s	3006 m	ν_5		
2980 vw,sh	2981 w	2978 w	2983 w	ν_6		
2948 W 9097 yw sh	2950 W 2026 yw	2947 vs,sn 2097 vys	2950 m 2027 s	V ₇		
2327 VW,511	2920 VW 9914 vw	2327 008	2327 5	v ₈ Vo		
2852 w	2860 vw	2854 s	2858 w	V10		
	1715 vw			10		
1708 m	*	1706 m	*		v_{11}	
1679 vs	1687 w,sh	1677 s,sh	1687 m	ν_{11}		
1000	1668 s	1050	1669 vw			
1660 m,sh	1657 s	1656vs	1657 m,sh	v_{12}		
1694 s		1692 vs	1648 vs *			
1024.8	1581 s	1023 VS			v ₁₃	
1586 s	1571 s.sh	1584 vs	1571 vs	V19		
10000	1469 m	100115	1471 vw	v_{13}^{13}		
1463 w,sh	1462 m	1464 w.sh	1464 m	V ₁₅		
1445 w	1446 m	1446 m	1445 m	V ₁₆		
	1430 w	1429 w		V ₁₇		
1420 m	1426 w	1422 w	1425 w	V ₁₈		
	1419 vw		1419 w	v_{19}		
	1412 m		1411 vw,sh	v_{20}		
1396 w,sh	1397 w,sh	1397 w,sh				
1388 s	1392 s	1388 s	1393 s	v_{21}		
1850	1955	1954	1961			
1359 s 1240 w sh	1355 vs	1354 s 1240 m sh	1361 m 1255 yrg ab	v_{22}		
1349 W,Sh	1205 s brd	1349 w,sh	1355 VW,SII 1207 ywy brd	V ₂₃		
1904 vs	1901 w	1904 s	1900 w	14		
1254 VS 1968 vs	1251 w 1976 vs	125± 8 1968 s	1250 w 1974 m	V24		
1200 V3	1270 VS	1200 3	1271 111	v 25		
1187 w	1196 m	1189 w	1184 vvw	v_{26}		
1181 w	*?			20	v_{26}	
	1162 w		1161 vw	v_{27}	20	
1135 vs	1140 s	1135 w	1135 vw	v_{28}		
	1135 s,sh					
1061 m	1061 s	1061 m	1062 m	v_{29}		
1004	1054 m,sh	1004	1000			
1024 w	1029 m	1024 w,sh	1028 w	V ₃₀		
1016 vw,sh	1022 m	1015 W	1022 vw,sh	v_{31}		
986 m	900 III 989 m	089 m sh	986 w	24		
500 m	974 m	502 111,511	969 w	V ₃₂		
964 m	957 w	964 s	959 w	V 33		
914 vw.sh	*	914 w.sh	*	• 34	Ved	
905 w	903 m	905 m	903 m	v_{35}	. 34	
$754 \mathrm{w}$	757 w	754 w,sh	761 w	v		
740 vw	*	742 m	*	36	v_{36}	
$659 \mathrm{w}$	*	$658 \mathrm{w}$	*		v_{37}	
652 w,sh	$654 \mathrm{m}$	651 w	652 vw	v_{37}		
623 w	621 w	624 m	623 w	v_{38}		
589 m	590 m	590 w	590 w	v_{39}		
556 w	561 vw	555 W	562 vw	v_{40}		
536 VW	*	532 vw,brd	<u>*</u>		v_{40}	
		420 W	408 W	V_{41}		
		390 VW,Sh	270 m			
		375 W 354 w	369 WW	V ₄₂		
		319 yw brd	333 w	v 43 V		
		303 vw.brd	000 W	v 44 V 45		
		000 m,010	242 vw	• 45 V46		
		220 w.sh	227 vw	V ₄₇		
			187 w	v_{48}		
		163 w,sh		v_{49}		
		128 w,sh		v_{50}		
			101 m	v_{51}		
			85 m			
		77 s	73 m	v_{52}		
			62 m	ν_{53}		

Tab. 6.	Measured	infrared a	and Raman	spectral	data ^a for	3-methox	ymethyl	ene-2,4-	pentanedior	ne (MMP).
---------	----------	------------	-----------	----------	-----------------------	----------	---------	----------	-------------	-----------

^aWeak bands in 4000–3100 and 2800–1800 cm⁻¹ regions have been omitted.

^bAbbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder; brd, broad.

	Calculated		Observed		
No.	ZEa	EZa	ZEa/EZa	Fundamental	PED (ZEa) ^{a}
ν ₁	3088	3086	3056	CH ₃ asym stretch	$95 (O)CH_3$ as
v_2	3078	3076	3034	CH_3 asym stretch	99 (t) CH_3 as
v_3	3077	3076	3028	CH_3 asym stretch	97 (c) CH ₃ as
v_4	3056	3052	3015	CH_3 asym stretch	22 (t) CH_3 as
V ₅	3050	3041	3000	=C—H stretch	98 =C-H s
v_6	3047	3040	2980	CH ₃ asym stretch	97 (c) CH ₃ as
v_7	3045	3031	2948	CH_3 asym stretch	99 (O)CH ₃ as
v_8	2970	2958	2927	CH ₃ sym stretch	99 (t) CH_3 ss
v_9	2964	2954	2914	CH ₃ sym stretch	98 (c) CH_3 ss
v_{10}	2957	2947	2852	CH ₃ sym stretch	$94 (O)CH_3 ss$
v ₁₁	1672	1685	1677/1706	C=O stretch	55 (t) C=O s, 11 C=C s
V ₁₉	1650	1640	1656/	C=O stretch	72 (c) C=O s
V ₁₃	1596	1619	1584/1623	C=C stretch	$48 \text{ C}=C \text{ s}, 11 = C H \rho, 10 = C O \text{ s}$
V ₁₄	1461	1461	1469	CH ₃ asym bend	87 (O)CH ₃ aδ
V ₁₅	1456	1455	1463	CH ₃ asym bend	91 (O)CH ₃ aδ
V ₁₆	1430	1437	1445	CH ₃ asym bend	73 (c)CH ₃ aδ
V ₁₇	1429	1432	1430	CH ₃ sym bend	54 (O)CH ₃ sδ, 30 (tc)CH ₃ aδ
V ₁₈	1426	1429	1420	CH ₃ asym bend	71 (t) CH ₃ aδ
V10	1412	1427	1419	CH₂ asym bend	79 (c) CH ₂ aδ
V ₂₀	1408	1416	1412	CH ₃ asym bend	84 (t) CH ₂ aδ
V ₂₀	1369	1367	1388	=C-H rock	$31 = C - H \circ. 16 = CC_{2}as$
V 21	1341	1329	1359	CH₂ sym bend	$74 (t) CH_{\circ} s\delta$
V	1330	1320	1349	CH ₃ sym bend	73 (c) CH ₂ sõ
V 23	1267	1276	1294	=C-O stretch	37 = C - O s, $18 = C - H o$
Var	1253	1250	1268	CC ₂ asym stretch	30 CCoas
Vac	1170	1168	1187/1181	CH ₂ rock	46 (O)CH ₂ 0
V 20	1140	1140	1162	CH ₂ rock	93 (O)CH ₂ 0
V 90	1123	1132	1135	O—C stretch	$16 \text{ O}-\text{CH}_{*} \text{ s}, 15 = \text{C}-\text{O} \text{ s}$
V ₂₀	1047	1048	1061	CH₂rock	18 (c) CH ₂ o. 23 O—CH ₂ s
V29	1007	1004	1024	CH ₃ rock	$33 (c) CH_{*}\rho$, 29 (t) CH _* \rho
V ₂₁	1003	1001	1016	CH₃rock	33 (t) CH ₈ o. 26 (c) CH ₈ o
V29	981	963	986	CH₃rock	23 (t) $CH_{*}\rho$. 14 (c) $CH_{*}\rho$
V	938	951	974	C—CH₂ stretch	$18 (t)C - CH_{\circ} s. 24 (t) CH_{\circ} o$
V24	933	892	964/914	=C-H wag	67 =C-H ω
Ver	892	878	905	C—CH₂ stretch	29 (c) C—CH ₃ s. 12 (t) C—CH ₃ s.
V26	735	721	754/740	CC ₉ sym stretch	$18 \text{ CC}_{\circ} \text{ ss.}$ 15 C=C-O δ . 12 CC $_{\circ}\delta$
v_{27}	632	637	652/659	C=O wag	20 (c) C=O ω. 14 (c) C=O ω
V28	597	603	623	C=O rock	13 (c) C=O o, 12 (t) C=O o
V20	568	532	589	C=O rock	34 (t) C=O p, 23 (c) C=O p
v_{40}	539	505	556/536	C=O wag	45 (t) C=O ω , 15 (c) C=O ω
V ₄₁	389	452	426	$=CC_{2}$ rock	$14 = CC_{2} \rho, 14 CO \rho, 21 = CC_{2} s$
V ₄₉	383	409	375	C—C—C deformation	26 (t) C—C δ, 14 C—O—C δ
V43	359	333	354	C—C—C deformation	28 (c) C—C—C δ, 20 (t) C—C—C δ
V44	338	331	319	C—O—C deformation	21 C—O—C δ. 15 (t) C—C—C δ
V45	318	280	303	C = C torsion	30 C=C τ. 23 (c) C-C-C δ
ν ₄₆	223	186	242	$=CC_9$ deformation	$58 = CC_{\circ} \delta$
V47	219	169	220	=CC ₉ wag	$36 = CC_2 \omega$, 12 C=C τ
V48	193	132	187	C—CH ₃ torsion	78 (c) C—CH ₃ τ
ν ₄₀	167	126	163	C—CH ₃ torsion	68 (t) C—CH ₃ τ
V50	145	120	128	C=C-O deformation	30 C=C-O δ, 33 CC ₂ ρ
V ₅₁	129	114	101	O-CH ₃ torsion	47 O—CH ₃ τ, $16 =$ C—O τ. 22 CC ₀ ω
V59	65	68	73	=C $-$ O torsion	$43 = C - O \tau$. $34 O - CH_{\circ} \tau$
V52	53	49	62	C-COCH ₂ torsion	$25 (c) = C - C \tau$. 28 (t) = C - C τ
v_{54}	31	32		C — $COCH_3$ torsion	41 (t) = C – C τ , 29 (c) = C – C τ

Tab. 7. Comparison of calculated and observed vibration frequencies of MMP conformers at ab initio MP2 level with cc-pVTZ basis set in vacuum.

^{*a*}s, symmetric; a, asymmetric; (t) *trans* acetyl; (c) *cis* acetyl; s; stretch; δ , deformation; ρ , rocking; ω , wagging; τ , torsion.

Fig. 13. Calculated Raman spectra of individual *ZEa* and *EZa* MMP conformers (curves b and a, respectively) at MP2 level in cc-pVTZ basis set. Calculated Raman spectra of MMP with 80 % of *ZEa* and 20 % of *EZa* conformers (curve c) and with 50 % of *ZEa* and 50 % of *EZa* conformers (curve d). Curves e and f are experimental Raman spectra of MMP in chloroform and acetonitrile solutions at room temperature, respectively.

at 1596 cm⁻¹ and at 1619 cm⁻¹ for ZEa and EZa conformers, respectively.

According to [Oelichmann, 1982] for the Z orientation of C=O and C=C double bonds the difference of their vibrational band frequencies is usually over 60 cm^{-1} whereas for the *E* orientation it is lower than this value. For our compound we calculated this difference of 76 and 54 cm⁻¹ for the Z and E orientation of trans and cis acetyl groups, respectively, of the ZEa conformer and of 66 and 21 cm⁻¹ for the Z and E orientation of cis and trans acetyl groups, respectively, for the EZa conformer. The corresponding experimental differences obtained from the bands in Raman acetonitrile solution spectra are of 89 and 67 cm⁻¹ for the ZEa conformer and 80 and 29 cm⁻¹ for the EZa conformer, respectively. Therefore in the light of the calculated wavenumbers in this region as well as in other regions we can argue for the assignment of the measured IR and Raman spectra as a mixture of ZEa and EZa conformers.

Fig. 14. Calculated IR spectra of individual *ZEa* and *EZa* MMP conformers (curves b and a, respectively) at MP2 level in cc-pVTZ basis set. Calculated IR spectra of MMP with 80 % of *ZEa* and 20 % of *EZa* conformers (curve c) and with 50 % of *ZEa* and 50 % of *EZa* conformers (curve d). The curves e is an experimental IR spectrum of a next liquid MMP at room tomporature

of a neat liquid MMP at room temperature.

To support this conclusion we have calculated IR and Raman band intensities in the region of C=O and C=C bonds for the mixture of 80 % of ZEa and 20 % of EZa conformers and 50 % of ZEa and 50 % of EZa conformers (Figs. 13 and 14) and increasing band intensities in more polar surroundings can be explained by the increasing amount of the more polar EZa conformers in the mixture. The calculated IR and Raman band intensities show relatively well agreement with the experimental spectra in this region which cannot be achieved with the opposite assignment.

Conclusion

The analysis of NMR and vibrational spectra supported by theoretical calculations in vacuum and in the environment of various polarities revealed the existence of two structural forms of MMP. The studied compound exists in the solid state as the ZEa conformer and similarly predominate in a less polar environments, e.g. CCl_4 or chloroform. In the more polar environments (such as dichloromethane, acetonitrile, DMSO) conformational equilibrium of MMP is visibly shifted towards the *EZa* conformer and MMP exists in these solutions as a mixture of two ZEa and *EZa* conformations. Conformational equilibrium of neat liquid MMP approaches to the conformational equilibrium in the acetonitrile solution.

Such experimental behaviour has been supported also by the solvent effect calculations at *ab initio* MP2 and DFT B3LYP levels using IEF PCM model. The assignment of normal vibrational modes of MMP based on PED calculations was performed.

Based on the measured vibrational and NMR spectra and quantum-chemical calculations we can conclude that MMP exists as a mixture of both *ZEa* and *EZa* conformers with *Z* and *E* orientations of both acetyl groups and with the *anti* orientation of the methoxy group. This study so extends the spectroscopic and structural information about the push—pull compounds without intramolecular hydrogen bonds.

Acknowledgement

This article was created with the support of the Ministry of Education, Science, Research and Sport of the Slovak Republic within the Research and Development Operational Programme for the project "University Science Park of STU Bratislava", ITMS 26240220084, co-funded by the European Regional Development Fund.

References

Albrecht R (1977) Prog. Res. 21: 9.

- Almenningen A, Gatial A, Grace DSB, Hopf H, Klaeboe P, Lehrich F, Nielsen CJ, Powell DL, Traetteberg M (1988) Acta Chem. Scand. A42: 634.
- Becke AD (1988) Phys. Rev. A 38: 3098-3100.
- Becke AD (1993) J. Chem. Phys. 98: 5648-5652.
- Beech T, Gunde R, Felder P, Günthard H (1985) Spectrochim. Acta 41A: 319.
- Bouzard D (1990) Recent Progress in the Chemical Synthesis of Antibiotics; Springer-Verlag: München, p. 249.
- Bowles AJ, George WO, Maddams WF (1969) Chem. Soc. B: 810.
- Cadioli B, Gallinella E, Pincelli U (1982) J. Mol. Struct. 78: 215.
- Cahill P, Gold LP, Owen NL (1968) J. Chem. Phys. 48: 1620.
- Cook AG (1969) Ed., Enamines: Synthesis, Structure and Reactions; Marcel Dekker: New York.
- Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem. Phys. Lett. 255: 327–335.

- de Smedt J, Vanhouteghem F, van Alsenoy C, Geise HJ, Van der Veken B, Coppens P (1989) J. Mol. Struct. 195: 227.
- Diallo AO (1981) Spectrochim. Acta 37A: 529.
- Durig JR, Little TS (1981) J. Chem. Phys. 75: 3660.
- Dyke SF (1973) The Chemistry of Enamines; Cambridge University Press: London.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA, 2003.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT.
- Gallinella E, Pincelli U, Cadioli B (1983) J. Mol. Struct. 99: 31.
- Gatial A, Sklenák Š, Milata V, Biskupič S, Zalibera Ľ, Salzer R (1997) J. Mol. Struct. 410–411: 435.
- Gatial A, Herzog K, Milata V, Zalibera L, Biskupič S, Salzer R (1999) J. Mol. Struct. 482–483: 609.
- Gatial A, Milata V, Biskupič S, Pigošová J, Herzog K, Salzer R (2004) Asian Chemistry Letters 8: 169–186.
- Gatial A, Juhásová H, Gróf M, Kožíšek J, Milata V, Prónayová N, Matějka P (2011) J. Mol. Struct. 993: 232–242.
- Gatial A, Dorotíková S, Plevová K, Milata V, Prónayová N, Matějka P (2015) J. Mol. Struct. 1090: 112–120.
- Gróf M, Gatial A, Milata V, Prónayová N, Sümmchen L, Salzer R (2007) J. Mol. Struct. 843: 1–13.
- Ignatyev IS, Lazarev AN, Smirnov MB, Alpert ML, Trofimov BA (1981) J. Mol. Struct. 72: 25.

- Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37: 785-789.
- Mennucci B, Tomasi J (1997) J. Chem. Phys. 106: 5151-5158.
- Merrick JP, Moran D, Radom L (2007) J. Phys. Chem. A 111: 11683–11700.
- Møller C, Plesset MS (1934) Phys. Rev. 46: 618-622.
- Oelichmann HJ, Bougeard D, Schrader B (1982) Angew. Chem. Suppl. 1404–1415.
- Owen NL, Sheppard N (1964) Trans. Faraday Soc. 60: 634.
- Owen NL, Seip HM (1970) Chem. Phys. Lett. 5: 162.
- Pyckhout W, Van Nuffel P, Van Alsenoy C, Van den Enden L, Geise HJ (1983) J. Mol. Struct. 102: 333.
- Sakakibara M, Inagaki F, Harada I, Shimanouchi T (1976) Bull. Chem. Soc Jpn. 49: 46.
- Samdal S, Seip HM (1975) J. Mol. Struct. 28: 193.