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Abstract: The main objective of the presented work was to explore the possibilities of parallel computing 
utilization in chemical engineering. Parallel computers and principles of parallel computing are in brief 
described in Introduction. The next part exposes the possibilities of parallel programming in Matlab and 
C# programming language environment. The next three parts provide case studies of parallel computing in 
chemical engineering. Each example of the benefits of HPC involves a comparison with its serial equivalents.

Keywords: parallel computing; parallel programming; chemical engineering

Introduction

The need for powerful computers has led to the 
construction of massive parallel super-computers 
enabling to understand phenomena such as ga-
laxy formation, molecular dynamics and climate 
change, among others (Navarro et al., 2014). Data 
parallelism is a form of computing parallelization 
across multiple processors in parallel computing 
environments, focused on data distribution across 
different parallel computing nodes. Not long ago, 
parallel computers were associated with fairly large 
machines, most of them running Linux, designed 
for special computations requiring extreme per-
formance, such as quantum mechanical calcula-
tions, computational fluid dynamics, molecular 
simulations, and chemical process optimization, 
among other applications relevant to chemical 
industry (Castier et al., 2014).
The first case study presented refers on a global 
optimization method exploiting parallel compu-
ters, used to fit the equation of state (EOS) para me-
ters. Sometimes, model developers try to correlate 
experimental data as precisely as possible, which 
means that the global minimum of the objective 
function is the desirable target. Locating the 
global minimum of complicated functions, with 
many state parameters or a massive number of 
experimental data points, requires large compu-
tational effort and time consuming calculations, 
often carried out using a single processor in a 
personal computer (PC). Recent Windows ver-
sions of software such as Mathematica and Matlab 
exploit data parallelism to speed up the calcula-
tions. Nonetheless, many legacy sequential codes 
exist in languages such as Fortran and C#. Their 
adaptation for maximum performance in parallel 

computers may require extensive reprogramming 
but substantial performance gains are possible in 
certain applications with only a few changes in the 
existing codes (Castier et al., 2014). This case study 
shows that EOS parameter fitting is one of such ap-
plications comparing two types of software utiliz-
ing the Simplex algorithm in parallel computers, 
applicable both in single multiprocessor PCs and 
in cluster supercomputers.
The second presented case study shows the benefits 
of parallelization of a large system of nonlinear 
equations. The main goal was to design a technique 
allowing the utilization of existing codes designed 
for serial execution. As an example of this approach, 
a model of a distillation column for ammonia puri-
fication is presented.
The third case study refers to heavily stochastic 
modeling of virus membrane filtration, which is 
characterized by very low need for process commu-
nication. This fact represents the highest benefit of 
parallelization of the sequential code.

Case study — Global optimization

The problem of EOS parameters fitting is fre-
quently used and well-known in the chemical 
engineering praxis. Probably the most challenging 
task is related to multiple minima in objective func-
tions, each represented by a different parameter 
set. The most straightforward procedure is based 
on several runs of local optimization algorithms 
from different initial estimates or using global 
optimization methods. An important fact is that 
these local minima have very often similar values 
of the objective function but significantly different 
values of the EOS parameters. Another challenge 
of this approach is the selection of suitable starting 
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points for the optimization and subsequent run of 
an efficient optimization process.
Optimization of the parameters of a non-random 
two-liquid model (short NRTL equation) for systems 
ethanol-benzene and diethylamine-ethanol was 
chosen as the case study. Ethanol-benzene equilib-
rium was described by 12 and diethylamine-ethanol 
equilibrium by 18 experimental isobaric points. 
The objective function used in the presented case 
studies was in the form:
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Here, the second equation term describes the impact 
of the temperature difference on the total pressure. 
Comparison of the experimental and optimized 
data is depicted in Fig. 1.
The presented case studies were run on an 80 cores 
computer cluster. To highlight the benefits of paral-
lelization, two different languages (platforms) were 
used. The first chosen language was Matlab inclu-
ding Parallel Computing Toolbox™. This program-
ming language has been developed by MathWorks 
and it is currently very popular in engineering 
and scientific disciplines as well as a teaching tool 
in many courses. Parallel Computing Toolbox™ 
allows solving computationally and data-intensive 
problems using multicore processors, GPUs, and 
computer clusters. High-level constructs, parallel 
for-loops, allows parallelizing applications without 
CUDA or MPI programming. The presented strate-
gy is based on finding a suitable loop that allows the 
code (objective function calculation) to be executed 
in parallel. Initial estimates of the NRTL equa-
tion parameters from user defined interval were 
randomly generated. Endurance testing was based 
on the evaluation of 10 mil. of initial estimates and 

every test was repeated five times. The resulting 
time of endurance testing was defined as the ave-
rage time of all five tests and differences in timings 
were less than 5 %. In each testing of global optimi-
zation, global minimum of the objective function 
was reached. Basic quantitative parameter, which 
compares the efficiency of the parallel algorithms, 
is the speedup (Sp) defined as the ratio between the 
base serial program’s execution time (tseq) and its 
parallel implementation execution time (tpar).
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Dependence of the execution time on the number 
of cluster cores and the speedup of the parallel code 
are depicted in the next series of figures (Fig. 2).
The second chosen platform was the .NET Frame-
work and the programming language C#. To paral-
lelize the algorithm, the MPI.NET library was used. 
MPI.NET is a high-performance, easy-to-use imple-
mentation of the Message Passing Interface (MPI) 
for Microsoft’s .NET environment. MPI is nowadays 
a standard for writing parallel programs running 
on a distributed memory system, such as a compute 
cluster. MPI provides functions and subroutines to 
control parallel computations and pass information 
from one process to another. In a message-passing 
system, different concurrently-executing processes 
communicate by sending messages over a network. 
Unlike multi-threading, where different threads 
share the same program state, each of the MPI pro-
cesses has its own, local, program state that cannot be 
observed or modified by any other process except in 
response to a message. Therefore, the MPI processes 
themselves can be as distributed as the network per-
mits, with different processes running on different 
machines or even different architectures. Speedup 
of the parallel version is depicted in Fig. 3.

Fig. 1. t-x, y diagrams for binary systems used in the case studies: ethanol-benzen (left), 
diethylamine-ethanol (right).
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From Figs. 2 and 3 it is clear that the speedup of 
parallel optimization is quite linear and the capa-
city utilization of computer sources is higher than 
90 % in both cases. There is a huge difference in the 
timing of Matlab and MPI.NET implementations 
caused by fact that Matlab is a scripting program-
ming language while a source code written in C# 
is compiled into an intermediate language (IL) that 
conforms to the Common Language Infrastructure 
(CLI) specification and to the native code when 
run.

Case study — Large system of nonlinear 
equations

Parallelization of solving a large system of nonlinear 
equations is the second presented case study. This 
problem occurs frequently in numerical methods in 
chemical engineering. To demonstrate the benefits 
of parallelization, the standard algorithm for sol-
ving a system of nonlinear equations implemented 
in Matlab was modified.

The Newton’s method is a basic general purpose 
approach for solving nonlinear equations pro viding 
linear approximation to the nonlinear system based 
on a Jacobian matrix. In the general form of the 
Newton method, the iterations and phases of each 
step have to be performed one after another in 
order to preserve the correctness of the numeri-
cal algorithm. In general, the standard Newton’s 
method comprises three basic steps:
1. estimation of the Jacobian — determined by 

backward differential formulas,
2. solution of a system of linear equations (very 

often large and sparse),
3. improvement of the previous estimate.
If the Jacobian is determined in each iteration, 
it is always the most time consuming part of the 
algorithm. On the other hand, parallelization of 
the estimation of the Jacobian is quite a trivial task 
as the columns of the Jacobian matrix can be pro-
cessed independently.
The most universal solver for a system of nonlinear 
equations presented in Matlab is the function fsolve 

Fig. 2. Execution time and speedup as a function of the number of cluster cores.

Fig. 3. Execution time and speedup as a function of the number of cluster cores.
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based on the interior-reflective Newton method and 
employing the subspace trust-region method. The 
default version of the algorithm uses sequential 
approach for the determination of the Jacobian. 
However, it allows overriding the estimation of the 
Jacobian via solver option settings. As our primary 
goal was to implement parallelization of the default 
version the solver (without significant modifica-
tions of the existing code), the sequential version 
of the Jacobian determination was replaced with a 
parallel version which is the most straightforward 
procedure. This approach allows utilizing the 
benefits of parallelization without modifying the 
existing users programs and default solver.
To demonstrate the simplicity and efficiency of 
the presented approach, a case study focused 
on the steady state simulation of a distillation 
column for ammonia purification was prepared. 
The mathematical model was described by MESH 
equations; MESH being an acronym referring to 
the different types of equation: Material balances, 
vapour—liquid Equilibrium equations, mole frac-
tion Summations and enthalpy (H) balances. The 
main idea is in the assumption that the vapor and 
liquid streams leaving an equilibrium stage are in 
complete equilibrium with each other and ther-

modynamic relations can be used to determine the 
equilibrium stage temperature and relate the con-
centrations in the equilibrium streams at a given 
pressure (Perry et al., 1997). A complete distillation 
column is considered as a sequence of such stages. 
A distillation column model is an ideal candidate 
for the presented case study, as it allows increasing 
the number of trays, which results in the increase 
of the number of nonlinear equation to be solved. 
In general, the number of all column equations is 
NJ (2NI + 4) + 1, where NJ is the number of column 
trays and NI is the number of components of the 
separated mixture. Total material balance and ma-
terial balances of components on trays are linearly 
dependent, which means that, the total number of 
nonlinear equations of the distillation column is 
NJ (2NI + 3) + 1 which is at the same time also the 
number of unknown parameters. Table 1. presents 
the execution times for four different numbers of 
trays; all execution times are in seconds.
For better visualization of the results, a speedup 
of the parallel code is depicted in Fig. 4. From the 
pictures it is clear that the parallel version of the 
algorithm is more effective than its serial equiva-
lent. On the other hand, in case of a 50 tray column 
(200 nonlinear equations), the benefits of paralleli-

Tab. 1. Execution time as a function of the number of equations and cores.

Number 

of trays

Number of cores

1 2 4 8 16 24 48 64 72 80

    50 13.9 8.3 6.2 4.3 3.2 3.1 3.1 3.5 3.8 3.5

  250 219.2 111.6 61.0 34.5 19.7 15.7 10.5 9.9 9.5 9.6

1000 1590.0 798.8 428.3 221.4 119.8 83.8 52.4 41.2 38.7 35.5

2500 15329.6 7697.3 4097.5 2099.8 1065.8 750.7 401.7 324.0 292.3 269.2

Fig. 4. Speedup of parallel code.
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zation are evident when sixteen cores are employed. 
Further increase in the core number did not pro-
vide a significant increase in the speedup, probably 
due to the dominance of process communication 
over the time consuming single calculations. If the 
number of equations is higher, the capacity utiliza-
tion increases radically. In case of the largest system 
investigated in the presented study, the measured 
speedup was higher than 55.

Case study — Stochastic hydrodynamic 
model of virus filtration

Solving problems of previous case studies required 
the use of numerical methods. The third case study 
on parallel computing in chemical engineering 
refers to hydrodynamic model of virus membrane 
filtration.

Virus filtration is a well-established method for the 
minimization of the inherent risk of viral contami-
nation in the production of therapeutic proteins 
(Miesegaes et al., 2009). Several recent studies have 
reported a significant decline in virus retention 
during the course of filtration through different 
parvovirus filters (Lute et al., 2007; Hirasaki et al., 
1994; Omar and Kempf, 2002; Lutz et al., 2004; 
Bolton et al., 2005). However, the mechanisms 
controlling this loss of virus retention are still not 
well understood (Bakhshayeshi et al., 2011). Our 
hydrodynamic model is able to simulate the path of 
a virus in the porous structure of a membrane. To 
reach relevant and objective results, a high number 
of viruses have to be tested on an adequate three 
dimensional network of the membrane. Because of 
the very small size of virus particles, the path of a vi-
rus in a membrane is random. This and other men-
tioned facts distinguish the third case study from 
the previous two and make the model stochastic. It 
means that partial tasks of the parallel program can 
be absolutely mathematically independent with very 
small need of process communication. To describe 
porous structure of the membrane, parameters like 
pressure and diameter of the pores were used. A 
simple network model of the membrane is shown 
in Fig. 5.
The movement of virus particles is affected only 
by hydrodynamics. The presented case study was 
run on an eight cores computer processor. As in the 
first case study, two different languages (platforms) 
were used to highlight the benefits of paralleliza-
tion. The first chosen language was Matlab and the 
second one was C# utilizing the MPI.NET library. 
The parallelization strategy was based on a paral-
lel for loop. Endurance testing was based on flow 
simulation of 100 mil. of virus particles through a 
network of the size of 20 × 20 × 20. Dependence 

Fig. 5. Illustration of simple network model 
of membrane.

Fig. 6. Execution time and speedup as a function of the number of cluster cores (Matlab).
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of the execution time on the number of computer 
processor cores and the speedup of the parallel 
code in Matlab and C# language are depicted in the 
series of figures below (Figs. 6 and 7).
From Figs. 6 and 7 it is clear that the speedup of the 
parallel optimization is quite linear and the capacity 
utilization of computer sources is higher than 99 % 
in both cases.

Conclusions

In this paper, utilization of parallel computing in 
chemical engineering simulations was investigated. 
Several examples of the benefits of HPC were pre-
sented and their comparison with serial equivalents 
is provided. To highlight the benefits of paralleli-
zation, two different languages (platforms) were 
used. The first chosen language was Matlab inclu-
ding Parallel Computing Toolbox™ and the second 
chosen platform was the .NET Framework and the 
programming language was C# using the MPI.NET 
library. The routine problem of chemical engineer-
ing praxis — fitting EOS parameters was investi-
gated in the first presented case study. The speedup 
of parallel optimization was quite linear and the 
capacity utilization of computer sources was higher 
than 90 % for both programming languages. The 
second case study demonstrated benefits of paral-
lelization of solving a large nonlinear equations 
system. This case study focused on the steady state 
simulation of a distillation column. In the case of 
the largest system (2500 trays), the measured speed-
up was higher than 55, using an 80 cores cluster. 
The most notable speedup of parallelization was 
reached in the third case study. The reason of such 
high speedup was the strictly stochastic character of 
our hydrodynamic model of virus filtration. From 
the presented case studies it is clear that parallel 

computing is an effective tool for solving chemical 
engineering problems. Despite the fact that mo-
dern operating systems and hardware are very well 
prepared for such applications, except for ANSYS 
and PROCAST programs, parallel computing has 
not yet been implemented in standard simulation 
programs.
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