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Abstract: The continuous stirred-tank reactor with uncertain parameters was stabilized in the open-loop 
unstable steady state using the robust model predictive control. The gain matrices of the robust state-feedback 
controller were designed using the nominal system optimization and the quadratic parameter-dependent 
Lyapunov functions. The controller was verifi ed by simulations using the non-linear model of the reactor 
and compared with the robust model predictive controller designed using the worst-case system optimization. 
The values of the quadratic cost function and the consumption of coolant were observed. Both robust model 
predictive controllers stabilized the reactor despite constrained control inputs and states. The robust model 
predictive control based on the nominal system optimization improved control responses and decreased the 
consumption of coolant.
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Introduction

Chemical reactors are very important equipment in 
chemical and food industries, and they are complex 
and complicated systems from the control viewpoint. 
The main reasons are the nonlinear behaviour (Kvas-
nica et al., 2010), multiple steady states (Švandová et 
al., 2005), potential safety threats in reactors with 
exothermic chemical reactions (Ball and Gray, 2013) 
or presence of various uncertainties. Some of them 
arise from varying or not exactly known parameters, 
as e.g. reaction enthalpies, reaction rate constants, 
heat transfer coeffi cients, etc. (Laššák, 2010; Bakošová, 
2012). These uncertainties can cause low quality of 
the control performance or even instability of the 
closed-loop controlled system. Implementation of a 
robust model-based predictive control (MPC) strategy 
designed using the Lyapunov functions overcomes 
these problems. The advantage of this approach is 
handling uncertainty, input and output constraints 
and getting optimal solution in each control step. 
The disadvantage is the signifi cant computational 
burden necessary for solving the convex optimization 
problem that is often formulated using linear matrix 
inequalities (Kothare et al., 1996). Wu (2001) designed 
the robust MPC based on the state feedback and the 
worst-case objective function optimisation for a class 
of systems with structured time-varying uncertainty 
and presented implementation of the designed robust 
MPC to the stable CSTR control problem. To reduce 
conservatism Ding (2010) designed a parameter-
dependent dynamic output feedback and proposed 
an iterative algorithm for the on-line synthesis of the 
control law via convex optimization. Ghaffari et al. 

(2013) extended the robust MPC design for additive 
discrete time uncertain nonlinear systems, designed 
the controller using the worst-case optimisation and 
presented the simulation results obtained for the 
theoretical CSTR with the fi rst order chemical reac-
tion working in the stable operating point.
Based on previous works (Bakošová et al., 2013, 
Bakošová and Oravec, 2013; Oravec and Bakošová, 
2012), this paper studies the problem of stabilization 
of an open-loop unstable CSTR using the robust 
constrained MPC based on the nominal system op-
timization and the parameter-dependent Lyapunov 
functions (PDLFs). This approach was compared with 
the robust MPC designed using the worst-case system 
optimization. The conditions for the robust MPC 
design were formulated in the form of linear matrix 
inequalities (LMIs) in both approaches. Solution of 
the LMIs represents a convex optimization problem 
that was solved in the MATLAB environment by the 
YALMIP toolbox (Löfberg, 2004) with the SeDuMi 
solver (Sturm, 1999) and the non-iterative algorithm 
was used. The robust stabilization of the CSTR was 
simulated using the non-linear model.

Theoretical

Suppose that the controlled process is a linear state-
space system in Eq. (1)
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where k is the discrete time, x(k) is the vector of 
system states, u(k) is the control input vector, y(k) is 
the controlled output vector and the matrices A(k), 
B(k), C have appropriate dimensions. A(v), B(v) are 
matrices of the v-th vertex of the uncertain system. 

 is a convex set of all admissible controlled systems 
and conv is a function returning the convex hull of 
the system vertices.
The symmetric control input constraints are in the 
form of the Euclidean and the peak norms and the 
symmetric controlled output constraints are in the 
form of the Euclidean norm in Eq. (2)

max ,max2

max2

, , 1, 2, , ,

, 0

j j uu k u u k u j N

y k y k
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The task is to design a state feedback controller 
that assures the stability of the closed loop with the 
unstable controlled system in Eq. (1). The state-
feedback control law is described by Eq. (3)

 ( )u k F k x k  (3)

where F(k) is the gain matrix of the robust state-
feedback controller in the k-th control step. The 
simplifi ed notation of the discrete-time dependence 
in the form Fk = F(k) will be used in the next text.
To design the gain matrix Fk, the approach de-
scribed in Cuzzola et al. (2002) was applied. The 
conditions in Eq. (4) hold for the square parameter 
depended Lyapunov matrix Pk

(v) = (Pk
(v))T > 0, the 

inverse Lyapunov matrix Qk, the inverse parameter-
dependent Lyapunov matrix Xk

(v) = (Xk
(v))T > 0, the 

auxiliary matrix Yk, and the weight parameter k.
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The quadratic cost function in Eq. (5) evaluates the 
quality of control from the k-th to the N-th control 
step
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s

N
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where ts is the sampling time and Wx, Wu are the 
real symmetric weight matrices. The minimization 
of J assures the optimal solution of the robust MPC 
problem that can be transformed into the solution 
of a convex optimization problem formulated us-
ing the linear matrix inequalities (LMIs) in Eqs. 
(6)—(8).

 ( ), ,
min v

k k k
kQ X Y

 (6)

subject to

 
T

( )T

1
0, 1, ,

*

k

vv
k

x
v N

X
 (7)

T ( ) T ( )T T ( )T T T

* 0 0
0,

* * 0

* * *

v T w w
k k k k k k x k u

v
k

k

k

Q Q X Q A Y B Q W Y W

X

I

I

 w  (8)

The LMIs are obtained using substitutions and 
Schur complement formula (Cuzzola et al., 2002). 
Minimization of J for N  in Eq. (5) is transformed 
to minimization of the auxiliary weight parameter  
in Eq. (6), that assures minimization of the weight of 
the inverse parameter-dependent Lyapunov matrix 
Xk

(v) of the robust stability condition. The symbol 
* in Eq. (8) denotes the symmetric structure of the 
matrix, I and 0 represent identity and zero matrices 
of appropriate dimensions, respectively. Parameters 
v and w are the indices of the system vertices,  is 
the set of vertex indices. Several approaches were 
designed for solution of the convex optimisation 
problems formulated using LMIs. Cuzzola et al. 
(2002) designed the standard worst-case system op-
timization approach (WCSOA). The improvement 
of the algorithm is based on the nominal system 
optimization approach (NSOA) (Ding et al., 2007) 
of the LMI in Eq. (8). Two different approaches 
for robust MPC design are used also in this paper. 
The fi rst one is the standard WCSOA for the set w  

 = {1, …, Nv}, which designs the Lyapunov matrix 
using all system vertices. The second approach is 
the NSOA that uses the singleton w   = {0} and 
constructs the Lyapunov matrix taking into account 
only the nominal system. The constraints on con-
trol inputs in Eq. (2) can be included to the convex 
optimization problem in Eqs. (6)—(8) by adding the 
LMIs in Eq. (9)
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Similarly, the constraints on the controlled outputs 
can be incorporated into the robust MPC design 
adding the LMIs in Eq. (10)
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The convex optimization problem is solved in 
each control step k. Therefore it is necessary to use 
proper sampling time ts.
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The algorithm of the robust constrained MPC has 
following steps:
1. Decide whether the WCSOA set of system verti-

ces  = {1, …, Nv} or the NSOA singleton  = {0} 
is used.

2. Set k = 0 and set the initial values of the sampling 
time ts, the weight matrices Wx, Wu, the total 
number of control steps N, the initial condi-
tions of the system states x(0), the values of the 
boundaries on the control inputs umax and the 
controlled outputs ymax.

3. Update the control step k = k + 1.
4. Measure or estimate the current values of the 

system states x(k).
5. Solve the convex optimization problem described 

by Eqs. (6)—(10) and fi nd the matrices Qk, Xk
(v) 

and Yk.
6. Find the gain matrix Fk of the state-feedback 

robust model predictive controller using Eq. (4).
7. Calculate the control input u(k) using Eq. (3).
8. Use calculated control input u(k) for control of 

the system in Eq. (1).
9. If k < N then go to third step else stop.

Experimental

The controlled process is a continuous-time stirred-
tank reactor (CSTR) for hydrolysis of propylene ox-
ide (C3H6O) to propylene glycol (C3H8O2) (Molnár 
et al., 2002) according to the Eq. (11)

3CH OH
3 6 2 3 8 2 rC H O H O C H O , 0H  (11)

The fi rst order exothermic chemical reaction is 
performed in a reaction vessel and the reaction 
heat is withdrawn from the reactor by the coolant in 

the reactor jacket. Technological parameters of the 
CSTR are given in the Table 1.
Model uncertainties of the reactor follow from the 
fact that there are three only approximately known 
physical parameters, which minimal, nominal and 
maximal values are shown in Table 2. Here, ∆rH is 
the reaction enthalpy of the chemical reaction, kr,  
is the pre-exponential factor in the reaction rate 
constant and Uh is the heat transfer coeffi cient. 
The nominal values of the uncertain parameters 
are the mean values of given intervals. Therefore 
the structured interval parametric uncertainties are 
considered. The multivariable controller design is 
assumed in order to assure control of the reaction 
mixture temperature in the reaction vessel Tr(t) and 
the coolant temperature Tc(t) in the jacket. Control 
inputs are the volumetric fl ow rates of the reaction 
mixture qr(t) and the coolant qc(t).
The nonlinear model of the CSTR is obtained by 
the mass balances of the propylene oxide (PO) and 
the main product propylene glycol (PG), and by the 
enthalpy balances of the reaction mixture and the 
coolant. The exponential dependence of the reac-
tion rate kr(t) on the temperature of the reaction 
mixture Tr(t) is described by the Arrhenius equa-
tion in the form kr(t) = kr,  exp(–g/Tr(t)). Applying 
simplifying assumptions the mathematical model 
of the CSTR can be described using four non-linear 
differential equations in Eqs. (12)—(15)
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Tab. 2. Uncertain parameters of the CSTR.

Parameter / Unit Minimal Value Nominal Value Maximal Value

∆rH / (kJ kmol–3) –5.64 × 106 –5.34 × 106 –5.28 × 106

kr,  / (min–1) 2.4067 × 1011 2.8267 × 1011 3.2467 × 1011

Uh / (kJ min–1 m–2 K–1) 13.11 13.80 14.49

Tab. 1. Technological parameters of the CSTR.

Parameter / Unit Value

Vr / m3 2.4

Vc / m3 2.0

r / (kg m–3) 947.19

c / (kg m–3) 998.00

cP,r / (kJ kg–1 K–1) 3.719

cP,c / (kJ kg–1 K–1) 4.182

Ah / m2 8.695

g = (Ea/Rg) / K 10 183.0
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Hence, the CSTR is the fourth-order nonlinear 
system with two control inputs qr, qc and four states 
cPO, cPG, Tr, Tc. The steady-state analysis of the reac-
tor is described in Oravec and Bakošová, 2012. The 
CSTR has three steady states. The temperatures 
of the reaction mixture 296.7 K and 377.5 K cor-
respond to the stable steady-states and the tem-
perature Tr

s = 343.1 K refers to the unstable steady 
state. From the control view-point the exothermic 
reaction can represent a potential safety problem. 
Therefore the possibility to use the robust MPC for 
stabilisation of the CSTR into the unstable steady 
state was investigated. The considered inlet values, 
the unstable steady-state values and the initial val-
ues are given in Table 3.
The nonlinear model of the CSTR described by 
Eqs. (12)—(15) was linearized in the unstable oper-
ating point and transformed from the continuous-
time domain into the discrete-time domain using 
the sampling time ts = 0.5 min. The state-space 
model in the form of Eq. (1) was obtained, where 
vectors x(k), u(k) and y(k) are defi ned in Eq. (16)

s
PO PO

s s
PG PG r r

s s
r r c c

s
c c

, ,

c k c

c k c q k q
x k u k

T k T q k q

T k T

y k x k

 (16)

The superscript s denotes the steady-state value. As 
three of the technological parameters are uncertain 
(Table 2), it is possible to obtain Nv = 23 = 8 different 
vertex systems using all combinations of the bound-
ary values of uncertain parameters. The convex 
hull of the system vertices describes the admissible 
range of the CSTR behaviour. The 9th system is 

the nominal model of the CSTR evaluated for the 
mean values of uncertain parameters ∆rH, kr, , and 
Uh. The nominal system is considered as the refer-
ence system.

Results and discussion

The closed-loop stabilization of the CSTR into 
its unstable steady state using the robust MPC 
was studied. Both, WCSOA and NSOA were used 
for the robust MPC state-feedback controller 
design in the MATLAB-Simulink environment. 
The optimization problem in Eqs. (6)—(10) was 
solved using the YALMIP toolbox (Löfberg, 2004) 
with the SeDuMi solver (Sturm, 1999) and the 
3.20 GHz CPU and the memory 4 GB RAM were 
used. The weight matrices in the cost function in 
Eq. (5) were the same in both approaches to make 
the results comparable and they were in the form 
of diagonal matrices with the main diagonals 
diag(Wx) = [0.01, 0.01, 100, 100]T, diag(Wu) = [1, 1]
T and zeros elsewhere. The symmetric boundaries 
in Eq. (2) were calculated for qr,max = 0.14 m3 min–1, 
qc,max = 1.26 m3 min–1, Tr,max = 373.1 K, Tc,max = 320.6 K 
using Eq. (16). Both robust MPC strategies were 
compared by simulation using the nonlinear model 
of the CSTR. The behaviour of eight vertex systems 
and the nominal system was investigated. To show 
clearly the difference between the approaches, only 
the worst and the best control trajectories of all nine 
possible ones are depicted in the Figures 1, 2. The 
Figure 1a) shows the controlled outlet temperature 
of the reaction mixture Tr(t) assured by the WCSOA 
(dashed) and NSOA (solid) strategy, respectively. 
The worst control response (squares) is compared 
with the best control response (circles). The refer-

Tab. 3. Inlet values, steady-state values and initial values of variables in the nominal CSTR.

Variable / Unit Inlet Value Steady-state Value Initial Value

cPO / (kmol m–3) 0.082 0.037 0.042

cPG / (kmol m–3) 0.000 0.045 0.040

Tr / K 299.1 343.1 341.1

Tc / K 288.2 290.6 288.6

qr / (m3 min–1) – 0.072 0.072

qc / (m3 min–1) – 0.631 0.631

Tab. 4. The cost function values and the coolant consumption.

robust MPC approach: WCSOA NSOA Comparison

System Vc,total
WCSOA / m3 JWCSOA Vc,total

NSOA / m3 JNSOA ∆Vc,total/ % ∆J/ %

Mean case 5.155 1 071.6 4.893 959.7 5.1 10.4

Worst case 5.482 1 301.9 5.217 1 121.7 4.8 13.8

Best case 4.831 870.4 4.583 814.2 5.1 6.5
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ence value is the temperature of the reaction 
mixture Tr

s = 343.1 K (dotted line). The Figure 1b) 
shows the controlled outlet temperature of the cool-
ant Tc(t). Here, the unstable operating point refers 
to Tc

s = 290.6 K (dotted). In both cases the tem-
peratures converge to the unstable operating point. 
Using the NSOA improved control responses. As 
can be seen in Figure 1, the settling time decreased. 
The offsets originate from the fact, that the linear 
model was used for the controller design and the 
non-linear model of the CSTR was controlled. The 
offset-free behaviour was obtained when the linear 
model of the CSTR was controlled (Bakošová and 
Oravec, 2013). The Figure 2 compares the control 
inputs — the volumetric fl ow-rate of the reaction 
mixture qr(t) and the volumetric fl ow-rate of the 
cooling medium qc(t). The values of the volumetric 
fl ow rates qr(t) and qc(t) calculated from Eq. (16) 

stayed within the prescribed constraints. The value 
of the cost function J and the total consumption 
of the coolant Vc,total were also evaluated and the 
results are presented in Table 4. The maximal and 
the minimal values denote the worst and the best 
situation, respectively. The values ∆Vc,total and ∆J 
were computed using Eq. (17) that represent the 
coolant reduction and the quality improvement us-
ing the NSOA. The NSOA reduced consumption of 
the coolant in about 5 % and improved the quality 
represented by the value of J in Eq. (5) from 6.5 to 
14 %.

 

c,total
c,total WCSOA

c,total

WCSOA

1 100%,    

1 100%

NSOA

NSOA

V
V

V

J
J

J

 (17)

 a) b)

Fig. 1. (a) The best (o) and the worst ( ) control responses of the reaction mixture temperature Tr(t) and (b) 
the best (o) and the worst ( ) control responses of the cooling medium Tc(t) assured by the WCSOA (- – -) 
and the NSOA ( ).

 a) b)

Fig. 2. (a) The best (o) and the worst ( ) control input trajectories of the volumetric fl ow rates of reaction 
mixture qr (t) and (b) the best (o) and the worst ( ) control input trajectories of the cooling medium qC(t) 
assured by the WCSOA (- – -) and the NSOA ( ).
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Conclusions

The robust constrained model predictive control 
of the CSTR was studied. The complexity of the 
controller design originated from the fact that the 
CSTR was described by eight vertex systems, and 
all of them had to be stabilized simultaneously. 
More over, the behaviour of the CSTR was non-
linear. The robust state-feedback controllers were 
designed using two approaches. The WCSOA 
considered eight vertex systems and the NSOA 
considered only the nominal system for optimisa-
tion. The controller design procedures were non-
iterative. The NSOA reduced the conservativeness 
and from the computational viewpoint simplifi ed 
the solved problem. The obtained simulation re-
sults confi rmed that the robust controller designed 
using the NSOA improved control performances 
and the coolant consumption was smaller in com-
parison with the WCSOA. Improvement of the 
NSOA design that will assure the offset-free con-
trol responses of the non-linear system will be the 
subject of the next research.
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Symbols

A state-space model matrix of states
Ah heat exchange surface area m2

B state-space model matrix of inputs
C state-space model matrix of outputs
c molar concentration kmol m–3

cP specifi c heat capacity kJ kg–1 K–1

∆rH reaction enthalpy kJ kmol–1 min–1

Ea activation energy kJ kmol–1 min–1

F gain matrix of state feedback controller
J quadratic cost function
∆J relative quadratic cost function value  %
k control step
kr reaction rate kmol min–1

kr,  pre-exponential factor min–1

N number of control steps
Nu number of system inputs
Nv number of uncertain system vertices
Nx number of system states
Ny number of system outputs
Q auxiliary matrix of quadratic stability 

criteria
q volumetric fl ow rate m3 min–1

Rg universal gas constant kJ K–1 kmol–1

T temperature K
t time min
U auxiliary matrix of inputs of robust

model predictive control
Uh heat transfer coeffi cient kJ min–1 m–2 K–1

u vector of system inputs
V volume m–3

Vc,total total consumption of coolant m–3

∆Vc,total relative consumption of coolant  %
v index of uncertain system vertex
Wu cost function weight matrix of inputs
Wx cost function weight matrix of states
w index of uncertain system vertex
X weighted inverse parameter-dependent 

Lyapunov matrix
x vector of system states
Y auxiliary matrix of robust model

predictive controller design
y vector of system outputs

Greek Letters

 optimized variable of robust model 
predictive control

 density kg m–3

 set of indices of system vertices
 convex set of uncertain vertex systems

Subscripts

0 initial value
c cooling medium
j index of control input
k control step
max maximal value
min minimal value
in input value
PO propylene oxide
PG propylene glycol
r reaction mixture

Superscripts

NSOA nominal system optimization approach
s steady state
WCSOA worst-case system optimization approach
T transposition of the matrix
(v) index of uncertain system vertex
(w) index of uncertain system vertex
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