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Abstract 

Two advanced approaches to control of a laboratory process are compared in the paper. The 

first approach is robust one and is based on design of robust PI controllers for systems with 

parametric uncertainty. The design method is based on plotting the stability boundary locus in 

the controller-parameter plane and the sixteen plant theorem. The stability boundaries 

obtained for sixteen Kharitonov plants split the controller-parameter plane in stable and 

unstable regions. The parameters of robust PI controllers are chosen from the stable region 

common for all sixteen plants. The second approach combines the neural-network based 

predictive controller and the neuro-fuzzy controller. The neuro-fuzzy controller works in 

parallel with the neural-network predictive controller and corrects its output in order to 

enhance the control response. Both methods are applied for control of a laboratory chemical 

continuous stirred tank reactor that is used as a mixer. NaCl solution with desired 

concentration is prepared in the equipment. The conductivity of the solution is the controlled 

variable and the volumetric flow rate of water is the manipulated variable.  

Keywords: process control, uncertainty, robust PI controller, neuro-fuzzy controller 

Introduction 

Operation of plants in chemical industry is connected with many different problems. Some of 

them arise from varying or not exactly known parameters, non-linear behaviour of controlled 

processes, varying operation points. Various types of disturbances also affect operation of 

chemical processes. The model based control strategies suffer from the inaccurateness of 

mathematical models of controlled processes.  All these problems can cause poor control 

responses or even instability of classical closed-loop control systems and various advanced 
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control strategies are developed in last decades to overcome all above mentioned problems, as 

e.g. adaptive control (Dostál et al. (2011)), robust control (Bakošová et al. (2009), Gerhard et 

al.s (2004), Méndez-Acosta et al. (2010)), model-based predictive control (Mohammadi et al. 

(2010), Yu and Yu (2007)) and others.  

 Two of advanced approaches to control of a laboratory process are compared in the 

paper, the robust approach and the neuro-fuzzy one. A simple method for design of robust PI 

controllers is presented (Tan and Kaya (2003)). The method is based on plotting the stability 

boundary locus of the closed-loop control system in the plane of controller parameters that is 

called ( )ip kk , -plane and on the sixteen plant theorem. Parameters of a stabilizing PI 

controller are determined from the stability region (Závacká et al. (2009)). The PI controller 

stabilizes a controlled system with interval parametric uncertainty, when the stability region is 

found for sufficient number of Kharitonov plants (Barmish et al. (1992)). 

 Presented neuro-fuzzy control is combination of two methods of intelligent control. 

The parallel connection of neural-network based predictive controller (Sámek and Macků 

(2008)) and neuro-fuzzy controller (Vasičkaninová and Bakošová (2007)) leads to better 

results in the reference variable tracking. Using this approach brings lowering overshoots in 

control responses and reducing settling times. 

 Both approaches are used for control of a laboratory continuous stirred tank reactor 

that is used as a mixer for preparing the NaCl solution with demanded concentration. 

Composition of the solution is determined by measurement of the solution conductivity and 

the conductivity is the controlled variable. The volumetric flow rate of water that is used for 

diluting of NaCl solution is the manipulated variable. The process is nonlinear and influenced 

by disturbances caused e.g. by pressure variations in the water distribution. These facts are 

reasons for application of advanced control techniques.  

Theoretical 

Robust PI controller design 

Consider a SISO control system with an uncertain controlled system and a PI controller. The 

controlled system is a system with parametric uncertainty that can be modelled in the form of 

an uncertain interval system  
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where [ ]+−∈ iii b,bb , i=0,1,2,…,m, and [ ]+−∈ jjj a,aa , j=0,1,2,…,n. Let the Kharitonov 

polynomials associated with N(s,b) and D(s,a) are (Barmish, 1994) 
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and 
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By taking all combinations of Ni(s) and Dj(s) for i, j = 1,2,3,4, the following family of sixteen 

Kharitonov plants can be obtained 
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The PI controller C(s) is described by the transfer function in the form 
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The problem is to find the parameters of the PI controller (5) that stabilize the system (1). 

 Decomposing the numerator and the denominator polynomials in (4) (Tan and Kaya 

(2003)) into their even and odd parts, and substituting ωjs = , where ω is the frequency, gives 
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The closed loop characteristic equation can be written as 
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Then, equating the real and the imaginary parts of  ( )ω∆ j  to zero, one obtains  

 ( )( ) ( )( ) ( )22222 ωωωωω −=−+−− joieiiop DNkNk      (8) 
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and 

 ( )( ) ( )( ) ( )222 ωωω −−=−+− jeioiiep DNkNk       (9) 

Let 
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Then, (8) and (9) can be written as 
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From (11), parameters of the PI controller (5) are 
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Solving these two equations simultaneously for ω 0≥ , the set of parameters kp and ki is 

obtained. Then, it is possible to plot the dependence of ki on kp, and the stability boundary 

locus ( )ω,k,kl ip  in the ( )ip k,k -plane is obtained. The stability boundary divides the parameter 

plane into stable and unstable regions. The stability region is found by the choice of testing 

points inside the regions. 

 The method is very fast and effective, but one problem consists in finding a proper 

interval of frequency ω. However, the Nyquist plot (Mikleš and Fikar (2007)) can be used for 

ω scaling. It is only necessary to find real values of ω  that satisfy condition 

 ( )[ ] 0Im =ωjG           (14) 

 All found stability regions represent values of the PI controller parameters for which 

the given controlled plant GK(s) with interval parametric uncertainty is Hurwitz stable. 
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Define the set Sij(C(s)Gij(s)) that contains all values of the parameters of the controller C(s) 

that stabilize Gij(s). Then the set of all the stabilizing parameters of the PI controller that 

stabilize the interval plant (1), can be written  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )sGsCSsGsCSsGsCSa,b,sGsCS 444412121111 ∩∩∩= L   (15) 

Neuro-fuzzy control 

Design of an intelligent control system includes two independent controllers. These 

controllers are connected in parallel in a feedback control loop according to the scheme 

shown in Fig. 1. The first controller is a neural predictive one (NNPC) and the second 

controller is a neuro-fuzzy one of ANFIS type. 

 

Fig. 1. Neuro-fuzzy control scheme. 

 

Neural-network predictive controller 

Model-based predictive control (MPC) is a common name for several different control 

techniques (Vasičkaninová et al., 2008). They all are connected by the same idea. The 

prediction of control inputs is based on a model of the controlled process (Fig. 2). 

 The neural-network predictive controller (NNPC) uses a neural network model to 

predict future plant responses to potential control inputs. An optimization algorithm then 

computes the control signals that optimize future plant performance. The neural network plant 

model is trained offline in batch mode using some of the training algorithms. The controller 

requires also significant amount of online computations, because an optimization algorithm is 

performed at each sample time to compute the optimal control input. 
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Fig. 2. Model-based predictive control scheme. 

 

The MPC method is based on the receding horizon technique. In the NNPC, the neural 

network model predicts the plant response over a specified time horizon. The predictions are 

used by a numerical optimization program to determine the control signal that minimizes the 

performance criteria (16) over the specified horizons. 
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In (16), N1, N2 define the horizon over the tracking error, Nu defines the control horizon and 

the control increments are evaluated. The variable u is the control signal, yr is the desired 

response and ym is the network model response. The parameter λ determines the contribution 

of the sum of squares of the control increments to the performance index (16). The values of u 

that minimize J are inputs to the plant. Minimisation of (16) is done with respect to input and 

output constraints 
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Minimal and maximal parameters of (17) are specified based on input and output data for a 

neural network. 

Neuro-fuzzy controller 

Neuro-fuzzy systems, which combine neural networks and fuzzy logic, have recently gained a 

lot of interest in research and application. A specific approach in neuro-fuzzy development is 

the adaptive network-based fuzzy inference system (ANFIS) (Jang, 1993). ANFIS uses a feed 
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forward neural network to search for fuzzy decision rules that perform well on a given task. 

Using a given input-output data set, ANFIS creates a fuzzy inference system (FIS), for which 

membership function parameters are adjusted using a combination of the back propagation 

and the least square methods. The ANFIS architecture of the first-order Takagi-Sugeno 

inference system is shown in Fig. 3. 

 

Fig. 3. System architecture of ANFIS. 

Results and discussion 

Description of the laboratory process 

The controlled process is a part of a multifunctional process control teaching system - the 

Armfield PCT40 (Armfield (2005), Vojtešek et al. (2007). Armfield PCT40 and additional 

equipments PCT41 and PCT42 represent the system that enables to control a wide class of 

technological processes, as a tank, a heat exchanger, a continuous stirred tank reactor and 

their combinations (Armfield (2006a), Armfield (2006b)). From these processes, the reactor 

was chosen as a controlled plant. The equipment was used as a mixer for preparing NaCl 

solution with demanded concentration. The connection to the control computer was realized 

via an I/O connector, which is connected to the PCL card. The card used is the MF624 

multifunction I/O card from Humusoft. This connection enables use of MATLAB Real-time 

Toolbox and Simulink or data entry from the MATLAB command window. 

 During experiments, NaCl solution with the concentration 0.8555 mol/dm3 was fed 

into the tank by a peristaltic pump (PP). The performance of the pump could be set in the 

range 40-100%, because for the pump performance less than 40%, revolutions of the rotor 

were very small and the produced force was not high enough to transport the fluid from the 



J.Závacká et al., Advanced Control of a Mixing Process 
25 

Acta Chimica Slovaca, Vol.4, No.2, 2011, 18 - 32 

barrel. For all experiments, the PP performance was 40% and this performance represented 

the volumetric flow rate of the NaCl solution 0.00175 dm3/s. The volume of the solution in 

the tank was kept constant with the value 1 dm3 during all experiments. 

 Used water was cold water from the standard water distribution. Water was dosed into 

the reactor by the proportional solenoid valve (PSV) and the volumetric flow rate of water 

was measured by the flow-meter. The PSV opening could be set in the range 0-100%, but the 

volumetric flow rate of water for the PSV opening in the range 0-30% was negligible.  

 From the control point of view, the controlled process was a single-input single-output 

(SISO) system. The manipulated variable was the volumetric flow rate of water (F) and the 

controlled variable was the conductivity of NaCl solution (G).  

Process identification 

Identification of the controlled process was necessary for robust PI controller design and it 

was based on measured step responses. The constant flow rate 0.00175 dm3/s of NaCl 

solution dosed into the reactor was assured by the peristaltic pump with performance 40% in 

all experiments. Fourteen various step changes of water flow rate were realized between 

0.0032 – 0.01145 dm3/s which represented the PSV opening 50-100%. The step responses 

were measured repeatedly. The resultant transfer function of the laboratory process was 

identified in the form of the transfer function (18) 
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with the values of parameters given in Table 1. So, the controlled laboratory processes can be 

considered as an uncertain system with the interval parametric uncertainty. The software 

LDDIF (Čirka and Fikar (2007)) was used for identification, which was based on the least 

squares algorithm. 

Table 1. Uncertain parameters. 

Parameter Minimal value Maximal value 

b1 0.0028 0.0428 

b0 -0.2776 -0.0156 

a2 1 1 

a1 0.6349 5.5024 

a0 0.2084 3.1351 
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Design of a robust PI controller 

Robust PI controller was designed using approach described in the theoretical section. For the 

controlled system in the form of the transfer function (18) with interval uncertainty (Table 1), 

the Kharitonov polynomials Ni(s), i = 1,2,3,4 for the numerator and Dj(s), j = 1, 2, 3, 4 for the 

denominator could be created, as it is seen in (19), (20) 
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and 
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where −
kb and +

kb , k = 0, 1, are lower and upper bounds of the intervals of the numerator 

parameters and −la  and +
la , l = 0, 1, 2, are lower and upper bounds of intervals of the 

denominator parameters. Using polynomials (19), (20), sixteen Kharitonov plants (4) could be 

obtained in the form 
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Consider one of the systems (21), where i = 2 and j = 3 
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The stability boundary of the closed loop with the system (23) in the ( )ip kk , -plane for 

ω = [0, 0.6267] is driven in Fig. 4. Then parameters kp and ki of the stabilizing controller were 

chosen from the stable region. 
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Fig. 4. Stability region of parameters kp, ki for the system G23. 

 

Stable regions for all 16 Kharitonov systems were obtained alike. In Fig. 5, stable regions are 

shown for 16 Kharitonov plants (21). The controller that stabilizes all 16 Kharitonov plants 

had to be found as the intersection of all stable regions. The intersection is in detail displayed 

in Fig. 6. 

 

Fig. 5. Stability regions for 16 Kharitonov. 

 

The parameters of the robust PI controller for control of the laboratory process were chosen 

from the stable region commo-n for all Kharitonov plants. Robust controller parameters kp, ki 

for control experiments were chosen as the parameters, for which the best simulation results 

were obtained. The used robust PI controller was 
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Fig. 6. Zoomed intersection of all stable regions. 

Design of a neuro-fuzzy control structure 

At first, neural network model of the laboratory process was trained offline. The back 

propagation method was used based on Levenberg-Marquardt algorithm using the measured 

input and output data. Then, parameters of neural predictive controller were adjusted. NNPC 

was used of MATLAB Neural Network Toolbox and all parameters were set experimentally, 

so that control performance has the best quality. Secondly, ANFIS was trained as a PI 

controller in five training periods. The training data were obtained using classical PI control 

of the process and the parameters of the classical PI controller were designed using Strejc 

method (Mikleš and Fikar 2007). ANFIS had two inputs: set-point error e and derivation of 

set-point error de. Seven bell shaped membership functions were chosen for ANFIS inputs: 

four for variable e and three for variable de (Fig. 7). All ANFIS controller parameters were 

chosen experimentally. 

 

Fig. 7. Membership functions for input variables e and de. 
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Comparison of robust PI controller with NFC 

The designed robust PI controller (25) was compared with NFC while controlling the 

laboratory process. The controlled variable y(t) was the conductivity G [mS] of the NaCl 

solution, the manipulated variable u(t) was the water flow rate F [dm3/s] and the reference 

w(t) was the conductivity of the NaCl solution which corresponded to the required 

concentration of the NaCl solution. 

 Obtained experimental results are presented in Figs. 6 and 7. The ability to control real 

process using the designed robust PI controller (25) and NFC was tested by setting the 

reference value in a wider area. Control responses of the laboratory process obtained using 

robust controller are shown in Fig. 8 for ω ∈ [15; 35] and control responses obtained using 

NFC are shown in Fig. 9 for the same range of ω. 

 

 

Fig. 8. Control of the laboratory process using robust PI controller. 

 

 

 

Fig. 9. Control of the laboratory process using NFC. 
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 Integrated square error (ISE) (Mikleš and Fikar (2007)) is often used criteria for 

appraisal of control performance quality and it was used for comparison of robust PI 

controller and NFC. Obtained results are presented in Table 2. According to ISE, the neuro-

fuzzy controller is able to assure better control responses then the robust PI controller. But the 

disadvantage of NFC is its much more complicated control structure. 

 

Table 2. ISE for robust PI controller and NFC. 

Controller ISE 

Robust PI controller 7844.9 

NFC 6283.4 

 

Conclusion 

In this paper, two advanced approaches to control of a laboratory process are compared, i.e. 

robust control and neuro-fuzzy control. The advantage of the first approach is that a simple PI 

controller is designed which has robust properties and is able to manage processes in the 

whole operation range. The robust PI strategy has guarantees of closed-loop stability, the 

proposed MPC approach does not. The importance of this approach corresponds to the fact 

that more that 90% controllers used in industry are up to now PID-like controllers. The other 

advantage is that the design procedure is simple and done off-line. But the controller is not 

optimal and the input and output constraints are not taken into account during the controller 

design. The advantage of the NFC approach is that it designs optimal control input sequence 

with respect to input and output constraints. But the design procedure is more complicated 

and it demands at first off-line training of models and then time demanding on-line 

calculations of control inputs. 

 Both designed controllers were tested experimentally by control of a laboratory 

process. Obtained experimental results confirmed that both designed controllers successfully 

controlled the laboratory process where controlled variable conductivity G [mS] of NaCl 

solution was controlled by water flow rate F [dm3/s]. After comparison of control results, it 

can be stated that designed robust PI controller is able to assure set-point tracking in the 

whole range of set-point changes. The oscillations of the control input represent the 

disadvantage of this controller. 
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 NFC left off-sets for higher values of set-points. The reason was not sufficient amount 

of data used in the off-line training phase of the algorithm that did not cover sufficiently the 

whole operation area and because an integrator is not including into the feedback arrangement. 
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