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Abstract

Synchronous scanning fluorescence spectroscopynimation with multivariate data
analysis is introduced for the characterization @adsification of brandies and wine
distillates. Synchronous fluorescence spectra wamrerded from 220 to 700 nm with constant
difference between excitation and emission waveleay = 10-100 nm followed by a
classification of samples using principal comporaerdlysis (PCA), hierarchical cluster
analysis (HCA), and linear discriminant analysi®A). Using PCA, correct classification of
brandy and wine distillates samples amounting t6%9was observed for synchronous
fluorescence data set measuredat 40 nm. HCA showed, that the brandy and wine
distillate samples measuredt = 40 nm created two clusters. The first clustehided only
wine distillate samples and the second one onlgdy@aamples. LDA performed on selected
wavelengths provided 99.2% of correct classifigatio
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Introduction

Fluorescence spectroscopy is simple, non-destrjation-invasive and relatively inexpensive
analytical method, which can be used to the armlyfsiluorescent compounds at very low
concentration levels while providing informationoaib structure, formulation, and stability
(Luykx and Van Ruth 2008). In conventional fluorelsce spectroscopy, two types of spectra
are generally measured. When a sample is excitedie¢d wavelengthex, an emission
spectrum is produced by recording the emissiomsitg as a function of the emission

wavelength\em An excitation spectrum may be obtained whgns scanned while the
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observation is conducted at the fixegh The broad nature and spectral overlap of
conventional fluorescence spectra can be overcanteenhanced selectivity can be obtained
using synchronous fluorescence spectroscopy (B SES, thé\ex andAm are scanned
simultaneously. Depending on the scan rate threie bges of SFS technique are possible
(Patra and Mishra 2002). Constant-wavelength Sk8rissimple technique as the scan rate
is constant for both monochromators and, therefbbomnstant wavelength interval, is

kept betweei.m andAe,. Variable-angle SFS is known as the second teaknithe
excitation and emission wavelengths may be vatiedls&aneously but at different rates. The
third technique, constant-energy SFS, has not bsed much. SFS is often considered as a
convenient technique for the analysis of multi-comgnt samples without resorting to
tedious separation procedures.

Total luminescence and synchronous scanning figerece spectroscopic techniques
have been widely used for the analysis of biolddisiaet al. 2007), environmental (Hua et al.
2005; Liu et al. 2006; Jaffrennou et al. 2007), pattochemical samples (Ryder 2004).
Recently, a review had been made of the applicatidluorescence spectroscopy to
foodstuffs (Sadecka and Téthova 2007). This teakaiq capable to define various properties
of food without use of any chemicals and time-conisig sample preparation. Both solids
and liquid samples can be used for direct anabfss®me food products. Food products
contain a lot of important intrinsic fluorophor&sdible oils (Guimet et al. 2006), dairy
products (Liu and Metzger 2007; Diez et al. 2008ney (Ruoff et al. 2006), eggs (Karoui et
al. 2006), meat (Luc et al. 2008), and beveragié®(&ka et al. 2008) contain proteins
including tryptophan, tyrosine, and phenylalaniesidues, free aromatic amino acids,
vitamins A and B, NADH, some nucleotides, chlorapbayd numerous other compounds that
can be found at a low or very low concentrationri&and De Baerdemaeker 2008). The
potential of fluorescence spectroscopy combinetd REEA (principal component analysis)
and factorial discriminant analysis (FDA) has basead for discriminating wines according to
their variety, typicality and vintage. PCA perforthen the whole collection of excitation
spectra allowed a good discrimination between Hremd German wines. Using FDA,
correct classification of typical and non-typicadijolais amounting to 95% was observed
for the emission fluorescence data set. Thesetsestubwed that fluorescence spectroscopy
mainly allow the identification of wines accorditayvariety and typicality (Dufour et al.

2006). SFS and multivariate data analysis have bsed for classification of differently
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stored beer samples (Sikorska et al. 2006) andfefeht beers from different breweries
(Sikorska et al. 2004). SFS is also useful for cteda of olive-pomace, corn, sunflower,
soybean, rapeseed, and walnut oil in virgin olillg¢Roulli et al. 2005).

The aim of the present study was to assess tleafmltof synchronous scanning
fluorescence spectroscopy using multivariate das#dyais methods to differentiate brandy
and wine distillate samples. The results indicag the synchronous fluorescence

spectroscopy offers a promising approach for thikeemitication of brandies.

Experimental

Samples

The samples corresponding to eight brandies (B) Badifferent producers (Bn=4; B,

n=2; Bs, n=2) and sixteen wine distillates (D) from 5 difnt producers (Dn=6; D, n=6;

D4, n=2; D, n=1; O, n=1) were purchased from the local supermarBstmdy B, a
traditional Slovak product from the Small Carpatinaticultural region, is made of the grape
using a classic method of aging wine spirit in bakrels. Brandy Bis made of the pure high
quality foreign wine spirit matured by natural wiayoak barrels. Bis made of the wine spirit
from the East Slovak viticulture regionatured by natural way in oak barrels.

Wine distillates are produced using wine spiritstdd with ethanol from other
sources. They are frequently blended with sugandy aroma and caramel. Wine distillates
D; contain honey and colorants (E 102, E 110, E E2TR2, E 132 and E 151). Samples were
stored in the dark at room temperature until theafaanalysis, diluted with water (1:100)

and measured.

Wood extract

Wood slices (5 g) of approximately 246cm thick were taken from the white oak
(Quercus albalog. After freeze drying the slices, the powdersvobtained by grinding in a
mortar with a pestle. The powder was then extrawitid 20 ml of methanol:water (2:3) for
two months in dark. Extract was filtered through.2 mm membrane filter, diluted with

water (1:100) and measured.
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Fluorescence spectroscopy

Fluorescence spectra were recorded using a PEhkiar LS 50 Luminescence
spectrometer equipped with a Xenon lamp and a zjgett (10 mmx 10 mmx 45 mm).
Excitation and emission slits were both set at 5 8ymchronous fluorescence spectra were
recorded by simultaneously scanning the excitaimh emission monochromator in the
excitation wavelength range 220-700 nm, with contstavelength differencesk between
them. Spectra were recorded for interval from 10 to 100 nm, in steps of 5 nm.
Fluorescence measurements were done in triplicateaich sample. The spectrometer was
interfaced to a computer supplied with FL Data MgereSoftware (Perkin-Elmer) for spectral
acquisition and data processing. Fluorescencesdittesi were plotted as a function of the
excitation wavelength. Contour maps of synchrorsmas fluorescence spectra were plotted
using Windows-based software OriginPro 7.5 (OrigibLUSA, 2002).

Multivariate analysis of data

PCA and HCA were applied to the fluorescence spdotinvestigate differences
between the samples. The aims of performing a PCAdltivariate data are two-fold. Firstly,
PCA involves rotating and transforming the origjmalaxes each representing an original
variable into new axes. The transformation is pengxd in a way so that the new axes are
orthogonal, i.e. the new variables are uncorreldted usually the case that the number of
new variables, p, needed to describe most of tplgadata variance is less than n. Thus
PCA affords a method to reduce the dimensionafith® parameter space. Secondly, PCA
can reveal those variables, or combination of éemthat determine some inherent structure
in the data and these may be interpreted in pmdiemical terms (Adams 1995).

When employing hierarchical clustering techniqgulbs,original data are separated
into a few general classes, each of which is furtivdded into still smaller groups until
finally the individual objects themselves remaincB methods can be divisive and
agglomerative. Divisive clustering starts with agée cluster, containing all samples, which is
successively divided into smaller clusters. Aggloatige clustering starts with individual
samples, which are fused to produce larger clusiénsre are diverse rules to measure
distances and linkages among individual clusters.u4ed agglomerative cluster analysis,
where similarity extent was measured by Manhattég-block) distances and cluster

aggregation was based on Ward’'s method (Otto 1999).
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Finally, a supervised pattern recognition methdA was used to classify samples
according to their origin. LDA method is an excetléool to obtain vectors showing the
maximal resolution among categories, maximal sdjmsrand compactness of the categories.

Statistica software version 6.0 (StatSoft, USA, D00as used for statistical analysis.

Results and Discussion

Total synchronous fluorescence spectra

The contour plots of total synchronous fluoreseeficSF) spectra were obtained by
plotting the fluorescence intensity (z-axis) asiaction of excitation wavelength (x-axis) and
wavelength intervalA (y-axis). The TSF spectra of a brandy sample sengn Fig. 1a. It
shows that the TSF contour map spreads in theagiitwavelength 220—-430 nm and in the
wavelength interval 10-100 nm. The plot shows tlfitemescence maxima. The maximum
fluorescence intensity was observed at excitatiamelength 228 nmA)\ = 90 nm), 278 nm
(AA = 50-100 nm) and 347 nmAX = 100 nm) for brandy B 224 nm AA = 80 nm), 279 nm
(AN =50-100) and 338 nnAX = 100 nm) for B and 204 nmAA = 100 nm), 278 nm
(AX = 50-100) and 335 nnAk = 100 nm) for B.

The TSF spectra of a wine distillate sample avergin Fig. 1b. The contour map
spreads in the excitation wavelength 220-410 nmAan80-100 nm. The spectra of wine
distillates are characterized by two fluoresceneg&ima, one at ~ 210 nm and the other at ~
335 nm, and a shoulder at about 280 nm. The maxifftuorescence intensity was observed
at excitation wavelength 210 nfAX = 80 nm) and 340 nnAQ = 100 nm) for distillate B
and 208 nm4&A = 90 nm) and 330 nnA} = 100 nm) for B.

Generally, the fluorescence maxima shift to smarvelengths with increasimh
for both brandy and wine distillates. Brandies dive longer wavelength high intensive
bands while wine distillates give the shorter wawngth less intensive fluorescence bands.
Fig. 1 shows the shift and amplification of synafouos fluorescence spectra of brandy and

wine distillate sample using different wavelengitervals.
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Fig. 1. Contour plots of total synchronous fluorsste spectra of brandy; Ba) and wine

distillate Dy (b) samples. Contours join the points of equalriscence intensity.
Synchronous fluorescence spectra of brangfcBand wine distillate P(d) recorded
at wavelength interval from 10 to 100 nm in step$@®nm.

For brandy B (Fig. 1c), three overlapping bands with maxima&g, 313 and 387 nm

are apparent for = 10 nm. FoAL = 50 nm, the fluorescence intensity of bands m®ed,

changes in their relative intensities were noted, maxima were 280, 313 and 380 nm,

respectively. FoAL = 60 nm, two bands with maxima at 279 and 371 rerohserved. In

addition, a short-wavelength shoulder appeared avittaximum at about 238 nm. At higher

A) values, the maximum of the synchronous spectrwshifted to the blue, with additional

fluorescence intensity changes. The shape andsibyesf the fluorescence maxima as well as

the shape of the spectra varied from one prodacanather (data not shown).
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For wine distillate B (Fig. 1d), two overlapping bands with maxima a2 28d
375 nm are apparent fai. = 30 nm. Increasing th&\ values to 50 nm led to an increase of
fluorescence intensity; simultaneously, the longs¥angth broad band grows in intensity
and its maximum shifts to 370 nm. Rtk = 60 nm, two bands with maxima at 279 and
358 nm are observed. In addition, a short-wavelesgoulder appeared with a maximum at
about 254 nm. At highexA values, the shoulder and the long-wavelength madre shifted
to the blue, with additional fluorescence intensityanges. Analogous to brandies, the shape

of the spectra varied from one producer to andiieta not shown).

Multivariate analysis of synchronous fluorescenpectra

PCA was applied separately on synchronous spewesured akk 10-100 nm. The
best classification was achieved using fluorescepeetra recorded Ak = 40 nm. Fig. 2a
shows that the plot of the first two PCs lead gwad discrimination of beverages according
to origin. PC1 describes 97.4% of the total vargarithe spectral pattern associated with this
component shows the importance of the band witl@mum at 280 nm, and of the long-
wavelength band at 34820 nm (Fig. 2b). PC2 describes 2.1% of the taakwnce and is

related to the changes in the 220 nm and alscei®%®-700 nm bands.
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Fig. 2. Principal component analysis similarity nfapore plot) determined by principal
components 1 (PC1) and principal component 2 (R&23and spectral pattern
corresponding to PC1 and PC2 (b) for spectra recbat wavelength interval 40 nm
on all 8 brandy samplesand all 16 wine distillate samples (0).

Applying HCAto fluorescence spectra recordedit= 40 nm, the dendrogram shows
that the wine distillates are well separated froanbies (Fig. 3). The first main cluster

contains wine distillate samples only, while them® one contains brandy samples. Wine
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distillates cluster consists of various small gmopvery similar products. One small group is
constituted of samples,vith 95% of similarity among them. Another is ctged of Dy

with 96% of similarity among them and 90% in redatto the previous group. Brandy
samples form two small subclusters of the second oiaster. One subcluster is constituted
of B, with 97% of similarity. Another subcluster is ctihged of B and B with 95% of

similarity among them and 80% in relation ta B
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Fig. 3. Hierarchical cluster analysis dendrogramg$lanhattan distance for
synchronous fluorescence spectra recorded at waytelenterval 40 nm on
brandy (B) and wine distillate (D) samples.

Finally, a supervised pattern recognition methddld, was applied to fluorescence
spectra recorded A = 40 nm to classify samples according to thegiariLDA starts with
number of objects whose group membership is kndwe.aim of supervised pattern
recognition methods is to use these objects todindle for assigning a new object of an
unknown group to the correct group. The startinigipof LDA is to find a linear discriminant
function, which is a linear combination of the ami variables. For multiple groups
canonical discriminant model yields more than oiserdninant axis (humber of categories
minus one). A basic problem in LDA is deciding wiiariables should be included in the
analysis. In stepwise discriminant function anayaimodel of discrimination is built step-
by-step (forward or backward). Specifically, atleatep all variables are reviewed and
evaluated (Fischer’s statistics - F to enter amal lfmove values) to determine which one
will contribute most to the discrimination betwegnoups. This variable will then be included
in the model, and the process starts again. Agiopming backward LDA, a classification

function was obtained for individual analyzed bexgers containing three variables (excitation
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wavelengths): 280 nm, 350 nm, and 387 nm, whickigden99.2% correct predictions for
brandies and wine distillates samples. These geshtiw that complete synchronous spectra
are not required to discriminate between beverdgstead of them, fluorescence intensity
could be measured at selected wavelengths.

Fig. 4 illustrates differences in the synchronflusrescence spectra of brandy and
wine distillate from various producers obtained&t= 40 nm. The synchronous fluorescence
spectra showed different shapes. In addition tditatiae variance, the samples also differ in
fluorescence intensities of particular componeBtandies had higher fluorescence intensity
regardless of wavelength but they were also morerdgeneous in this respect. Despite their
general similarity, the profiles of synchronousoflescence spectra of individual brandies

vary significantly, leading to the unique specpatterns (Fig. 4c).
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Fig. 4. Synchronous fluorescence spectra of brgByand wine distillate (D)
samples from three (1, 2, 3) producers (a, b, d)adbrandy, tryptophan (Trp),
tyrosine (Tyr) and oak wood (W) extract (d) obtairs wavelength interval 40
nm. W1- extracted for a week, W2 extracted for two months.

In our previous study we assumed that the relgtivarrow short-wavelength band at

~280 nm originate from the amino acids (T6thovale2009). To support this assumption,
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spectra of tyrosine and tryptophan in water weecemged af\A = 40 nm. Comparison shows
(Fig. 4d) that the maxima observed for tyrosine2(8rm) and tryptophan (289 nm) are not
consistent with the respective maxima in brand2@8 (hm). Both tryptophan and tyrosine are
excited at about 280 nm, their emission spectra laavoverlap in the spectral region between
300 and 320 nm. In all conventional spectroscagtiniques, the tyrosine component is
completely masked by the strong tryptophan fluease. Therefore, the identification of the
tyrosine component in the presence of tryptophanpmment is a challenging task.

The synchronous fluorescence technique can béedppl the resolution of tyrosine
and tryptophan fluorescence. It was found thatratllswavelength intervals, the synchronous
fluorescence spectra of a tyrosine-tryptophan mex#olution are characteristic of tyrosine,
while at large wavelength intervals, the specteasamilar to that of tryptophan (Chou et al.
1995). Fig. 5 shows the spectra of the brandfoB20- and 80-nm intervals with

corresponding spectra of free tyrosine and trypaopdolution for comparison.
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Fig. 5. Synchronous fluorescence spectra of tyeo&), tryptophan (b) obtained at
wavelength interval 20 nm and 80 nm, brandy anaisipe (c) at wavelength
interval 20 nm, and brandy and tryptophan (d) atekength interval 80 nm.
B1 — brandy, Tyr — tyrosine, Trp — tryptophan.
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The emission of brandy AA = 20 nm can be the contribution of tyrosine. Thad
appears at 280 nm and its position is consistetht tlve tyrosine in the aqueous solution. At
AX = 80 nm, the band observed at 279 nm can bewattdlio tryptophan. By comparing the
fluorescence spectra of brandy with those of gakmillic and syringic acids, tryptophol,
tyrosol and lignin we assumed that these compooadslso contribute to the fluorescence at
280 nm. The broad band at 3420 nm can be ascribed to the ferrulic, p-coumancd,
caffeic acids, chlorophyll, lignin, scopoletin, uatliferon and 4-methylumbelliferon.
Regardless of bands assignment, Fig. 4d proveshadliuorescent molecules in brandy
originate from oak wood.
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