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Abstract 

The theory of neighbouring-extremal control has been developed over the last 4-5 decades to 

avoid the costly reoptimisation of dynamic systems, primarily in applications with fast non-

linear dynamics. Perhaps the biggest drawback with this approach, when applied to chemical 

processes, is its poor performance in the presence of large parametric and structural model 

mismatch. On the other hand, model predictive control (MPC) and run-to-run optimisation are 

more resistant to model mismatch, but require time-consuming on-line reoptimisation that 

restricts their applications to slow dynamic systems. This paper proposes to combine both 

approaches in order to mitigate their deficiencies, thereby leading to an integrated two-time-

scale scheme with enhanced performance and tractability for dynamic real-time optimization. 

This scheme is demonstrated by two batch reactor examples. 

Keywords: dynamic optimisation, neighbouring extremals, optimal control, two-time-scale 

scheme 

Introduction  

In dynamic processes, disturbances and process uncertainties usually give rise to a decrease in 

production quality along with operational constraint violations. Common sources of 

uncertainty include measurement noise, inaccurate kinetic rate parameters, feed impurities, 

and fouling or deposition. It has been known for many years that the application of optimal 

control can help mitigate the effect of uncertainty on process performance, especially in the 

presence of constraints (Kadam and Marquardt, 2007). 
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A number of methodologies for dealing with uncertainty and disturbances in batch process 

can be found in the literature. Robust optimal control (Terwiesch et al., 1994; Diehl et al., 

2008) is a measurement- and reoptimisation-free approach that pre-computes control actions 

off-line for an expected range of uncertainty and can guarantee on-line feasibility, but is 

typically (very) conservative. At the other extreme, model predictive control (MPC) 

(Allgöwer and Zheng, 2000; Garcia et al. 1989) implements a reoptimisation strategy and 

uses measurements to update the current state of the model. This latter strategy suffers two 

important deficiencies: i) the presence of constraints may result in an infeasible solution; ii) 

the reoptimisations may not be tractable in real-time. Clearly, the time needed to reoptimise 

the system depends on both the problem complexity and the computing performance. Too 

large a computation time may lead to performance loss, or worse constraint violations, 

especially for systems with fast dynamics. 

In the so-called explicit MPC approach (Bemporad et al., 2002; Kothare et al., 1996), 

multi-parametric programming is used to precompute off-line all possible control actions for a 

given range of the state variables. The control inputs are then adjusted by simply selecting the 

control law that corresponds to the actual state of the process, as given by the latest 

measurements. Although this method can accommodate fast sampling times, its foremost 

limitation comes from the off-line computational effort needed to determine the control 

actions. This currently limits the application of explicit MPC to problems having no more 

than a few state variables as well as linear dynamics. 

Finally, adaptive methods, such as linear-quadratic-Gaussian (LQG) control (Zhou et 

al., 1995), adaptive control (Astrom and Wittenmark, 1989) and robust   loop-shaping 

(McFarlane and Glover, 1989; Zhou et al., 1995), update the process model by using the most 

recent measurement data, and then reconfigure the controllers. However, this latter 

reconfiguration step can be time-consuming and therefore not compatible with applications to 

chemical processes with fast dynamics. 

This paper presents a two-time-scale approach wherein a run-to-run adaptation 

strategy (Bonvin et al., 2006) is implemented at the slow time scale (outer loop) and is 

integrated with a (constrained) neighbouring-extremal (NE) controller (Bryson and Ho, 1975) 

that operates at the fast time scale (inner loop). More specifically, run-to-run adaptation of the 

terminal constraints (Marchetti et al., 2007) is considered  for the outer loop. In its original 

form, this scheme proceeds by reoptimising the batch operation between each run and 
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adapting the terminal constraints based on the mismatch between their predicted and 

measured values; but no adaptation is made within a run. In order to reject disturbances within 

each run and at the same time promote feasibility and optimality, a NE controller is here 

considered as the inner loop. The theory of NE control, which has been developed over the 

last 4-5 decades to avoid the costly reoptimisation of (fast) dynamic systems, is indeed well-

suited for batch process control. The integration between the outer- and inner-loops occurs 

naturally since the NE controllers are recalculated after each run based on the solution to the 

outer-loop optimisation problem. The resulting integrated two-time-scale optimisation scheme 

thus provides enhanced performance and tractability. 

Theoretical 

Problem formulation 

 Throughout the paper, the problem of dynamic optimisation with simple bounds 

(Problem 1) is considered in the form: 

 
0

min ( ( )) ( ( ), ( ))d
ft

fJ t L t t tφ= + ∫u
x x u        (1) 

 s.t. ( ( ), ( ) ) , 0  ft t t t= ≤ ≤F xx u&       (2) 
 0(0) =x x           (3) 
 min max≤ ≤u u u          (4) 
 

and the constrained dynamic optimisation problem (Problem 2) is then given by Problem 1 

with additional terminal constraints: 

 ref( ( ), )f ft t ≤ψ x ψ          (5) 

In (1)–(5), 0t ≥  represents the time variable, with ft  the final time; R un∈u  the control 

vector; R xn∈x  the state vector, with initial value 0x ; J , φ  and L  the scalar cost, terminal 

cost, and integral cost, respectively; and ψ  the vector of nψ  terminal constraints. All the 

functions participating in (1)–(5) are assumed to be continuously differentiable with respect to 

all their arguments. 

Let *u  denote the optimal solution. It is assumed throughout the paper that *u  is unique 

and that the Hamiltonian function (see below) is regular. These conditions typically lead to a 
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continuously differentiable extremal solution *u . Note that extremal solution *u  is given 

around the single control arc. 

Necessary conditions of optimality 

Following Bryson and Ho (1975), the Hamiltonian function H  is defined as follows: 

 ( , , ) ( , ) ( , ) , TH L= +x u λ x u F x u λ        (6) 

where R xn∈λ  denotes the so-called adjoint (or costate) vector, which satisfy 

   ,, 0T
ft t= − = − − ≤ ≤x x xλ H F λ L&        (7) 

where the terminal state for the adjoint vector is given as 

 [ ]( )
f

f t t
t

=
= xλ φ          (8) 

for Problem 1 and for Problem 2 is given as 

  ( )  
f

T
f t t

t
=

⎡ ⎤= +⎣ ⎦x xν ψλ φ        (9) 

Lagrange multipliers for the terminal constraints are expressed as R nψ∈ν . (The subscript 

such as y  for a given variable denotes partial derivatives of that variable with respect to y .) 

Provided that the optimal control problems: i) Problem 1 expressed by (1)–(4), and ii) 

Problem 2 expressed by (1)–(5) are not abnormal, the first-order necessary conditions for 

optimality (NCO) read: 

   , 0 T >= + =u u u uuH L F λ 0 H        (10) 

along with the additional conditions for Problem 2: 

 , 0, for each 1, , .k k k k nψν ψ ν= ≥ = …0       (11) 

This latter determines the set of active constraints at the optimum, which is denoted by the 

vector ψ  of dimension nψ . 

Neighbouring-extremal control 

Consider a small variation 0δx  in the initial states and a small variation δψ  (for Problem 2 

only) in active terminal constraints, 

 0 0(0) ,δ= +x x x          (12) 

 ( ( ), ) . (Problem 2 only)f ft t δ=ψ x ψ       (13) 
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The corresponding variations in optimal control vector ( )tδu , state vector ( )tδx , adjoint 

vector ( )tδλ  and Lagrange multiplier vector δ ν  (for the active terminal constraints ψ ) can 

be calculated from the linearisation of the first-order NCO represented by (10)–(11) around 

the extremal path (Bryson and Ho, 1975): 

 * *δ δ δ= +x ux F x F u&          (14) 

 * * *Tδ δ δ δ= − − −xx x xuλ H x F λ H u&        (15) 

 * * *Tδ δ δ= + +ux u uu0 H x F λ H u         (16) 

 0(0)δ δ=x x           (17) 

for Problem 1 and Problem 2. An additional condition for Problem 1 is: 

 *( )
f

f t t
tδ δ

=
⎡ ⎤= ⎣ ⎦xxλ xφ          (18) 

and additional conditions for Problem 2 are then denoted as: 

 ( )* * * * ( )
f

T T
f t t

tδ δ δ
=

⎡ ⎤= + +⎣ ⎦xx xx xλ ν ψ x ψ νφ       (19) 

 * ,
ft t

δ δ
=

⎡ ⎤= ⎣ ⎦xψ ψ x          (20) 

A superscript *  indicates that the corresponding quantity is evaluated along the extremal path 
*( )tu , 0 ft t≤ ≤ , and corresponding states, adjoints and Lagrange multipliers. 

It can be shown that the optimal control variation ( )tδu  is also obtained as the solution to the 

so-called accessory minimum problem (Pesh, 1990): 

• for Problem 1 is denoted as 

 
* *

2 *
* *0

1 1min ( ) ( ) d
2

 
2  

f

T
tT

f fJ t t t
δ

δ δ
δ δ δ

δ δ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ xx xu
xxu

ux uu

x xH H
x x

u uH H
φ   (21) 

 * * s.t. δ δ δ= +x ux F x F u&         (22) 

 0(0)δ δ=x x           (23) 

• and for Problem 2 is given as 

 ( )
* *

2 * * *
* *0

1 1min ( )
 
 

( ) d
2 2

f

T
tT T

f fJ t t t
δ

δ δ
δ δ δ

δ δ
⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ xx xu
xx xxu

ux uu

x xH H
x ν ψ x

u uH H
φ  (24) 

 * * s.t. δ δ δ= +x ux F x F u&         (25) 

 0(0)δ δ=x x           (26) 
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 * ,
ft t

δ δ
=

⎡ ⎤= ⎣ ⎦xψ ψ x          (27) 

Note that the adjoint vector function δλ  and Lagrange multiplier vector δ ν  associated to this 

linear-quadratic (LQ) problem are identical to those obtained from the solution of the linear 

two-point boundary-value problem (TPBVP), note (14)–(17) with (18) for Problem 1 and 

(14)–(17) with (19)–(20) for Problem 2. 

From the assumption that the Hamiltonian function is regular, *
uuH  is non-singular along 

0 ft t≤ ≤ , and (16) can be solved for ( )tδu  in terms of ( )tδx  and ( )tδλ : 

 * 1 * *( ) ( ) ( ) ( ) .Tt t tδ δ δ− ⎡ ⎤= − +⎣ ⎦uu u uxu H F λ H x       (28) 

Substituting (28) into (14)–(15) gives: 

 ( ) ( ) ( ) ( ) ( )t t t t tδ δ δ= −x α x β λ&        (29) 

 ( ) ( ) ( ) ( ) ( ),Tt t t t tδ δ δ= − −λ γ x α λ&        (30) 

where 

 * * * 1 *( ) : ( )t −= −x u uu uxα F F H H         (31) 

 * * 1 *( ) : ( ) Tt −= u uu uβ F H F          (32) 

 * * * 1 *( ) : ( ) .t −= −xx xu uu uxγ H H H H         (33) 

with the boundary conditions given by (17) and (18) for Problem 1, and by (17), (19), and 

(20) for Problem 2. 

Numerical Computation of Neighbouring Feedback Control 

The linear TPBVP given by (29)–(30) can be used to calculate the neighbouring-extremal 

control correction ( )tδu , 0 ft t≤ ≤ , in either one of two situations: 

I. The variations 0δx  or possibly δψ  are available continuously in time, in which case the 

backward sweep method (Bryson and Ho, 1975) can be used to derive an explicit 

feedback control law. 

II. The initial state 0δx  or in case of Problem 2 also (active) terminal constraint variations 

δψ  are available at discrete time instants, in which case the discrete feedback control 

can be obtained by directly re-solving the TPBVP. This can be done via a shooting 

method as described in Shooting Method section, below. 



M.Podmajerský et al.: Dynamic Optimisation of Batch Processes 
44 

Acta Chimica Slovaca, Vol.3, No.2, 2010, 38 - 56 

Shooting Method 

According to Pesh (1989) and Pesh (1990), the linear TPBVP given by (29)–(30) can be 

rewritten in the form: 

 

: ( )

( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( )T

t

t t t t
t t t t

δ δ
δ δ

=

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

Δ

x α β x
λ γ α λ
&

&
1442443

       (34) 

with the boundary conditions for Problem 1 given as 

 0
*

 ( )(0)
( )(0)  

f

f

ft

t
t

δδ δ
δδ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎡ ⎤−⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠xx

0 0 xI 0 x x
I λ0 0 λ 0φ     (35) 

or alternatively, the boundary conditions for Problem 2 read 

 
0

* * * *

( )(0)
((0

 

))  
f f

f
T T

ft t

t
t

δδδ
δδδ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟+ =⎜ ⎟⎜ ⎟⎜ ⎟ ⎡ ⎤ ⎡ ⎤− +⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠xx xx x

0 0 xxI 0 x
ν ψ I ψ νλ0 0 λ φ   (36) 

Substantially, the Euler-Lagrange equations (34) can be solved, in principle, by forward or 

backward finding of transition matrix. Then, the approach proceeds by guessing the missing 

initial (or terminal) conditions in (35), or alternatively in (36), and consequently by adjusting 

them in such a way that the corresponding conditions are satisfied. These can be determined 

by inverting partitions of the transition matrix (Pesh, 1989) at the initial (or terminal) time. 

The solution is provided directly by integration of the coupled equations, iteration is not 

required. Having solved the missing boundary conditions, an open-loop optimal solution with 

the demanded control histories is clearly a solution of initial-value problem described by 

Euler-Lagrange equations (29)-(30) with these estimated boundary conditions.  

Given the guess 0(0)δ δ=λ λ  for the adjoint variations at initial time 0t = , the (unique) 

solution to the linear Euler-Lagrange equations (34) is of the form: 

 0 1 2 0

0 3 4 0

: ( ;0)

( ; ) ( ;0) ( ;0)
,

( ; ) ( ;0) ( ;0
  

  )
t

t t t
t t t

δ δ δ
δ δ δ

=

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

λ
λ
x x

λ λ&
144424443

&

ϒ

ϒ ϒ
ϒ ϒ

      (37) 

where the transition matrix ( ;0)tϒ  is obtained as the solution to the initial value problem 

 ( ;0) ( ) ( ;0), 0 ; (0  ;0) . ft t t t t
t
∂

= ≤ ≤ =
∂

Δ Iϒ ϒ ϒ      (38) 

Substituting (37) into (35) leads to the following linear system in the variables (0)δλ  

(Problem 1): 
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 ( ) ( )* * * *
2 4 1 3 0( ;0) ( ;0) (0) ( ;0) ( ;0) .

f f

T
f f f ft t

t t t tδ δ⎡ ⎤ ⎡ ⎤− +⎣ ⎦ ⎣ ⎦−= −xx xx xxλ ν ψ xφ ϒ ϒ φ ϒ ϒ  (39) 

Substituting (37) into (36) and (27) leads to the following linear system in the variables 

(0),δ δλ ν  (Problem 2): 

 

* * * *
2 4

*
2

( ;0) ( ;0) (0

 

  )

( 0

  

) ;
f f

f

T T
f ft t

ft

t t

t

δ
δ

⎛ ⎞⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦ ⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠⎜ ⎟⎣ ⎦⎝ ⎠

xx xx x

x

ν ψ ψ λ
νψ 0

φ ϒ ϒ

ϒ

 

* * *
1 3

0*
1

( ;0) ( ;0)
.

( ;0)
f

f

T
f ft

ft

t t

t
δ δ

⎛ ⎞⎡ ⎤+ −⎣ ⎦⎛ ⎞ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎜ ⎟⎣ ⎦⎝ ⎠

xx xx

x

ν ψ0
ψ x

I ψ

φ ϒ ϒ

ϒ
    (40) 

In case of Problem 1, for given initial state variations 0δx , the solution to the linear system 

(39) provides the corresponding initial adjoint variations (0)δλ . In case of Problem 2, the 

wanted initial adjoint and Lagrange multiplier variations (0)δλ  and δ ν  are the solution of 

linear system (40), for given initial state and active terminal constraint variations 0δx  and 

δψ . Finally, the NE control variation can be calculated from (28) as: 

 ( ) 0* 1 * *   ( ) ( ) ( ;0) .
(0)

Tt t
δ

δ
δ

− ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
uu ux u

x
u H H F

λ
ϒ      (41) 

Run-to-run Constraint Adaptation 

The principle behind run-to-run optimization is similar to MPC. But instead of adapting the 

initial conditions and moving the control horizon as is done in MPC, the adaptation is 

performed on the optimization model (e.g., model parameters or constraint biases) before re-

running the optimizer. More specifically, run-to-run constraint adaptation (Marchetti et al., 

2007) more specifically, adapts terminal constraints (5) in the optimisation model after each 

run as 

 ( ( ), )f ft tδ δ≤ψ x ψ          (42) 

where δψ  stands for the terminal constraint bias. Such a bias can be directly updated as the 

difference between the available terminal constraint measurements, measψ , at the end of each 

run and the predicted constraint values. This simple strategy may however lead to excessive 

correction when operating far away from the optimum, and it may also render the adaptation 
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scheme very sensitive to measurement noise. A better strategy consists of filtering the bias, 

e.g., with a first-order exponential filter: 

 [ ] ( )meas *
1 ( ), ,k k k k f ft tδ δ+

⎡ ⎤= − + −⎣ ⎦ψ I W ψ W ψ ψ x      (43) 

with k  the run index, and W  a gain matrix―typically, a diagonal matrix. 

 
Fig. 1. Run-to-run constraint adaptation scheme. 

The run-to-run constraint-adaptation scheme is shown in Fig. 1. The constrained dynamic 

optimisation problem uses the available process model. It is solved between each run, using 

any numerical procedure, such as the sequential (Edgar et al., 1988; Guntern et al., 1998; Ray, 

1981) or the simultaneous (Hertzberg, 1997; Biegler, 1984) approach of dynamic 

optimisation. The optimal control trajectory * ( ),0k ft t t≤ ≤u , is computed and applied to the 

plant during the k th run. The predicted optimal response is denoted by * ( )k tx . The 

discrepancy between the measured terminal constraint values meas
kψ  and the optimizer 

predictions ( )* ( ),k f ft tψ x  is then used to adjust the constraint bias as described earlier, before 

re-running the optimizer for the next run. 

Two-times-scale optimization scheme 

The Run-to-run constraint adaptation was shown to be a promising technology in (Marchetti 

et al., 2007). This approach provides a natural framework for handling changes in active 

constraints in dynamic process systems and it is quite robust towards model mismatch and 

process disturbances. Moreover, its implementation is simple. Inherent limitation of this 
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scheme, however, are that (i) it does not perform any control corrections during the runs, and 

(ii) it typically leads to suboptimal performance. On the other hand, neighbouring-extremal 

control as described above is able to correct small deviations around the nominal extremal 

path in order to deliver similar performance as with re-optimisation. Since no costly on-line 

re-optimisation is performed, this approach is especially suited for processes with fast 

dynamics. However, the performance of NE control typically decreases dramatically in the 

presence of large model mismatch and process disturbances, and it requires a full-state 

measurement. This leads to sub-optimality and, worse, infeasibility when constraints are 

present or limited measurements are available. Our proposal is to combine the advantages of 

these two approaches: Run-to-run constraint adaptation is applied at a slow time scale (outer 

loop) to handle large model mismatch and changes in active constraints, based on run-end 

measurements only; and NE control is applied at a fast time scale (inner loop), and uses 

measurement information available within each run, in order to enhance convergence speed 

and mitigate sub-optimality. The resulting integrated two-time-scale optimization scheme is 

depicted in Fig. 2. 

 
Fig. 2. Two-times-scale optimisation scheme employing neighbouring controller in the inner 

loop and run-to-run constraint adaptation in the outer loop. 
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The implementation procedure is as follows: 

Initialisation: 

0. Initialise the constraint bias δ =ψ 0 , select a gain matrix W  and set the run index to 

1k =  

Outer Loop: 

1. Determine *
ku  by solving the dynamic optimisation problem (1)–(5), then obtain the 

corresponding states *
kx  and adjoints *

kλ , together with the Lagrange multipliers *
kν  

that satisfy the NCO. If * 0k ≠ν , the terminal constraints are active and they satisfy the 

NCO expressed by (6), (7), (9), (10), and (11). If * 0k =ν , the terminal constraints are 

inactive and they satisfy the NCO expressed by (6), (7), and (8). 

2. Design a NE controller around the extremal path *
ku , either by using the backward 

sweep approach (continuous measurements, or by applying the transition matrix 

method (discrete measurements). Note that, if * 0k =ν , the NE controller design is 

given by Problem 1, if * 0k ≠ν  the NE controller design denotes Problem 2. 

Inner Loop: 

3. Implement the NE controller during the k th run in order to calculate the corrections 

( )k tδu  to * ( )k tu  based on the available (continuous or discrete) process 

measurements. 

4. Update the constraint bias 1kδ +ψ  as the filtered difference between the measured 

values of the terminal constraints and their predicted counterparts. 

5. Increment the run index 1k k←⎯⎯ + , and return to Step 1. 

The performance of this integrated scheme are illustrated with a case study in the subsequent 

section. 

Experimental 

A batch reactor example taken from Crescitelli and Nicoletti, 1973 is considered to illustrate 

the proposed integrated two-times-scale approach. The following series reaction takes place in 

the reactor: 
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 1 2k k⎯⎯→ ⎯⎯→R P Q          (44) 

that is initially loaded by reactant R  and by a small amount of product Q . The goal is to 

maximise the production of P , whereas Q  is an undesired by-product. The optimisation 

objective is then given as a maximisation of product P  concentration at the final time, P ( )fc t , 

while keeping the residual concentration of reactant P  at the final time, P ( )fc t , below the 

maximum threshold min
Rc . The manipulated variable is the reactor temperature R ( )T t . No 

bound constraints are imposed on the reactor temperature. Kinetic rate constants for the 

reactions are given by Arrhenius expressions:  

 ,0

R

4.2( ) exp , 1, 2.
( )

4.2

i

i i

E

k t k iR T t

⎛ ⎞
⎜ ⎟

= − =⎜ ⎟
⎜ ⎟
⎝ ⎠

      (45) 

Overall, the optimisation problem reads: 

 PT
max ( )fJ c t=          (46) 

 R R RR1( )s.t. (0) ); (c t c tk c β= − =&       (47) 

 1P 2 PR P P( ) ( ) ( ) (0); )(c t c t k t c tk c β= − =&       (48) 

 min
R R( ) ,fc t c≤           (49) 

where Rc , Qc  and Pc  are the concentrations [ ]mol/L  of the species R , Q , and P , 

respectively, 1k  and 2k  the kinetic coefficients [ ]1/min , RT  the reactor temperature [ ]K , and 

Rβ , Pβ  the initial states [ ]mol/L . The model parameters and initial conditions are given in 

Table 1, below. 

 

Table 1. Model parameters, and initial conditions 

1,0 0.535 11k e=  [ ]1/min  

2,0 0.461 18k e=  [ ]1/min  

1 75.4E =  [ ]kJ/mol  

2 125.6E =  [ ]kJ/mol  
8.4R =  [ ]J/mol/K  
8ft =  [ ]min  

R 0.53β =  [ ]mol/L  

P 0.43β =  [ ]mol/L  
min
R 0.1c =  [ ]mol/L  
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Design of control methods 

We have implemented the controller with constraint adaptation described in the theoretical 

section. As mentioned before, the neighbouring-extremal controller can be implemented in 

two ways: continuously or in discrete time intervals. In this paper, NE controller is always 

implemented in discrete time intervals. It is assumed that this implementation, can deliver 

more accurate and more stable performance. 

Results and Discussion 

Open-loop optimal control 

Solving the optimisation problem introduced by (46)–(49), with well-known sequential or 

simultaneous method, the piece-wise control profile (Fig. 3) shows the presence of one 

interior arc. Also, note that the inequality constraint is active at the end-point. Along this 

interior arc, at the start-points and at the end-points, the necessary conditions given by (6)–

(11) must hold.  

 
Fig. 3. Left: Optimal control solution – piece-wise control vs. smooth control; Right: 

Optimal state trajectories - piece-wise control vs. smooth control.  

Hence, uH  depends on control variable, the reactor temperature RT  which is considered as 

control variable, the problem is non-singular. Thus, the control action is explicitly determined 

by necessary condition (10). The smooth optimal control trajectory for optimization problem 

(46)–(49) is then provided as a solution of the differential-algebraic problem: 
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with boundary conditions: 
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The optimal control profile is estimated by guessing unknown vector R,0 P,0z λ λν⎡ ⎤= ⎣ ⎦ . 

The vector z  is iteratively updated until boundary conditions (54) are satisfied. Subsequently, 

the performance index evaluated at *z , 0.6477 [mol/L]J = , must match the objective value 

obtained by sequential or simultaneous method, 0.6475 [mol/L]J = . 

Closed-loop optimal control 

The integrated two-time-scale scheme is benchmarked on simulated reality in presence of 

uncertainty. In order to simulate the reality, the nominal model is perturbed by variations in 

the initial values, in the reaction constants, or/and by added measurement noise. While the 

controller designs are calculated using nominal mathematical model, the simulations are 

performed for measured outputs of simulated reality, hence the discrepancy between given 

states and measured outputs is considered as another form of uncertainty.  

Two cases are considered with following variations of reaction constants: 1,0 5%kδ = − , 

2,0 10%kδ = + , 1 1%Eδ = + , and 2 0.5%Eδ = − . In each case, performance of proposed 

integrated scheme is compared to the results obtained by pure neighbouring-extremal control 

and by constraint adaptation approach. A benchmark performed with negatively perturbed 
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initial conditions by 40% and without measurement noise is considered as Case 1. Same 

conditions are considered for Case 2 with measurement noise, in addition. There are no 

discontinuous perturbations considered during the batch time, in both case studies. These 

results are reported in Fig. 4, Case 1, and in Fig. 5, for Case 2.  

Performance in the Presence of Uncertainty 

In order to illustrate the benefits of the proposed integrated scheme, two case studies are 

investigated. The performance of the control methods is tested on system with modelled 

uncertainty. Within each case study, two adaptation strategies are compared along the 

proposed integrated two-time-scale control scheme in order to reject these perturbations 

(represented by uncertainty). Note that for the sake of comparison, the run-to-run adaptation 

is initialized with a constraint bias of 0δψ =  and considers a filter gain of 1=W  for Case 1 

and 0.2=W  for Case 2. This filter parameters were chosen so as to achieve the reference as 

fast as possible while the oscillations during the adaptation process should be regarded. The 

exact values were found from set of simulations performed with varying gains. 

For the Case 1, Fig. 4 displays converged response and control solutions and the 

evolution of terminal constraints for benchmarked control schemes, after 10 runs. Observe 

that in Case 1, the performance of the pure neighbouring controller is not sufficient, the single 

terminal constraint is not met and the performance index is the lowest during all batches. In 

contrast, pure constraint adaptation is able to fully recover optimality loss. This control and 

response solutions match the optimal solution for perturbed system. The same can be 

observed for proposed integrated two-times-scale scheme. Terminal constraint meets the 

reference value. The value of performance index slightly varies from reoptimised solution, but 

on the other hand, the optimality loss is almost recovered compared to the pure NE control 

scheme. Similar results are depicted for control profile that are closer to those from 

reoptimised solution in comparison to the pure NE control scheme. Hence, the NE controller 

is approximated and operates around the nominal solution, the optimality loss is expected and 

it highly depends on size of the variations from the origin. It is shown that the performance of 

NE controller is successfully improved by its integration into constraint adaptation scheme. 

Especially regard that the proposed solution almost satisfies the terminal constraint from the 

first to the fourth batch and it meets constraint, in proceeding batches. In opposite, the 

constraint adaptation approach needs at least 6 runs to meet the terminal constraint, in Case 1. 
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On the one side, the performance of converged solution of pure constraint adaptation seems 

better than the performance of the proposed solution, but on the other side, the first-mentioned 

method converges slower while during these batches, constraints are not met. In this manner, 

the proposed integrated two-time-scale scheme is more robust than the pure constraint 

adaptation. This observation is also illustrated by the next case study.  

Fig. 5 depicts the results for similar benchmark as previous, except the presence of 

output measurements. See, in Case 2, a weaker performance of pure NE controller is 

presented. The controller is unable to fully recover the optimality loss as well as the terminal 

constraints are not met during 20 batches. As is obvious from Fig. 5, the pure constraint 

adaptation approach is able to recover optimality loss while operating around the terminal 

constraint reference.  

Also, in Case 2, this approach needs several batches to intercept the neighbourhood of 

the reference. The integrated scheme shows similar results. In addition, this approach is able 

to recover most of the optimality loss during the first batches. Note that the terminal 

constraints in presence of noisy measurements are not exactly satisfied. They are held in close 

proximity from the desired reference. The filter parameter W is chosen such as to eliminate 

oscillations but they can not be completely eliminated in the presence of measurement noise. 

Still, it can be observed that the integrated scheme oscillates a little bit less than pure 

constraint adaptation. 

Conclusion 

In this paper, an integrated two-times-scale scheme has been proposed and investigated in 

order to improve the performance and tractability of dynamic real-time optimisation, with 

application to batch processes. The combination of two approaches, namely run-to-run 

constraint adaptation and neighbouring-extremal control, allows to complement the benefits 

of each other, while mitigating some of their deficiencies. Because of fast dynamics in 

chemical applications, the NE controller is able to adapt the control profile at a high 

frequency. On the other hand, run-to-run adaptation allows to deal with large model mismatch 

and handles changes in the set of active constraints after each run. This integrated scheme has 

been demonstrated through the case study of a batch reactor under ideal conditions with no 

measurement noise and under simulated reality with the presence of measurement noise. As 
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part of the future work, an extension of the current scheme to singular control problems is 

currently under investigation, as well as the ability to handle problems with path constraints. 

 

 

 
Fig. 4. Performance of Case 1, after 10 runs. Dotted lines with circles: optimal solution for 

perturbed system; dashed lines with crosses: neighbouring-extremal control; dash-
dotted lines with triangles: constraint adaptation control; solid lines with diamonds: 
integrated two-time-scale scheme control. Top left: Converged solutions for Rc ; top 
right: Converged solutions for Pc ; middle left: converged terminal constraints 
(zoomed); middle right: converged performance indices (zoomed); bottom left: 
converged control profiles; bottom right: evolution of terminal constraints. 
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Fig. 5. Performance of Case 2, after 20 runs. Dotted lines with circles: optimal solution for 

perturbed system; dashed lines with crosses: neighbouring-extremal control; dash-
dotted lines with triangles: constraint adaptation control; solid lines with diamonds: 
integrated two-time-scale scheme control. Top left: Converged solutions for Rc ; top 
right: Converged solutions for Pc ; middle left: converged terminal constraints 
(zoomed); middle right: converged performance indices (zoomed); bottom left: 
converged control profiles; bottom right: evolution of terminal constraints. 
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