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Abstract

In this work, a continuous-time extended Kalman filter (EKF) is presented, which allows the
parameters of nonlinear systems to be estimated. The idea of the extended Kalman filter is
extending the linearized Kalman filter to directly estimate the states of a nonlinear system and
linearizing the nonlinear system around the Kalman filter estimate. Two mathematical
models, an interacting tank-in-series process and continuous stirred-tank reactor (CSTR), are
introduced. EKF is used to estimate constants k;; and k;, for interacting tank-in-series process

and temperature of reaction mixture ¢ and frequency factor &y for CSTR.
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Introduction

State estimation is applicable to virtually all areas of engineering and science. Any discipline
that is concerned with the mathematical modelling of its systems is a likely (perhaps
inevitable) candidate for state estimation. State-space theory and state estimation was initially
developed in the 1950s and 1960s, and since then there have been a huge number of
applications.(Simon 2006)

State observation for linear differential-algebraic equations (DAEs) has been studied
by, for example, (Nikoukhah et al. 1992) using the Kalman filter. Non-linear DAEs are
considered in e.g. (Becerra et al. 2001), where an extension of the extended Kalman filter is
used and also by (Zimmer and Meier 1997), where the original DAE model is rewritten as an
ODE on a restricted manifold (Rheinboldt 1984). Other works include (Boutayeb and
Darouach 1995) that uses linearization techniques and (Kidane et al. 2003) that, in addition to

a linearization procedure, employs index reduction techniques to cope with high-index
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models. In (Kaprielian and Turi 1992), a Lyapunov based approach is used in the design of
the observer. In (Aslund et al. 2006) the state estimation for semi-explicit differential-
algebraic models has been studied where the proposed observer is formulated as a differential-
algebraic equation (DAE). Conditions on the design parameters in the observer are derived
such that the index of the observer is 1. Linearization of the error dynamics is used to obtain
local stability of the estimator error dynamics. This provides one possibility to design the
observer by studying the linearized system and using available linear DAE techniques.

Model estimation using fast orthogonal search (FOS) is presented in (Eklund et al.
2007). FOS is an efficient and effective method of system identification that is able to find
parsimonious models of systems from large numbers of candidate basis functions. The
method is related to, but more efficient than, a technique proposed by Desrochers for
approximating static nonlinear systems, where, amongst various differences, the
computational cost is proportional to the square of the number of candidates, whereas in FOS
it depends linearly on the number.

In this paper, extended Kalman filter is presented which allows the parameters of
processes to be estimated. We will extend the linearized Kalman filter to directly estimate the
states of a nonlinear system and linearize the nonlinear system around the Kalman filter
estimate. EKF will be used to estimate unknown parameters of tank-in-series process and

CSTR.

Theoretical

The continuous-time extended Kalman filter

Consider the following general nonlinear system model (Simon 2006):

x=f(x,u,wt)

v =h(x,v,t) 0
w~ (O’Q)

v~ (0,R)

The noise processes w and v are white, zero-mean, uncorrelated, and have known covariance
matrices Q and R. The system equation f{*) and the measurement equation /4(*) are nonlinear
functions. We will use Taylor series to expand these equations around a nominal control u,
nominal state xy, nominal output y,, and nominal noise values wy and vy. The Taylor series

linearization of equation (1) gives
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Xzf(x07uoewoat)+g (x_xo)‘*'g (u_uo)‘*'i (w=wy)
ox|, ou|, ow|,
= f(x,,uy, W,,t)+ AAx + BAu + LAw )
oh Oh
YR h(xg,ve, ) +—| (x—x)+— (v—v,)
ox|, ov|,

= h(x,,v,,t) + CAx + MAv

The definitions of the partial derivative matrices 4, B, C, L, and M are apparent from the

above equations. Now we define the nominal system trajectory as
Xo :f(xo,uo,wo,t) (3)
Yo =h(xy,vy,0)

We define the deviation of the true state derivative from the nominal state derivative, and the

deviation of the true measurement from the nominal measurement, as follows:

Ax =x—-X,
4)
Ay =y =y,
With these definitions equation (2) becomes
Ax = AAx + Lw
= AAx+w
w~(0,0).0=LOL" (5)
Ay = CAx + Mv
=CAx+V

v ~(0,R),R = MRM"
The inputs to the filter consist of Ay, which is the difference between the actual measurement
y and the nominal measurement yy. The Ax that is output from the Kalman filter is an estimate
of the difference between the actual state x and the nominal state xy. The Kalman filter

equations for the linearized Kalman filter are

A% = AAS + K(Ay — CAR)

K =PC'R"
: T, N Tp-1 (6)
P=A4AP+PA +Q—-PC R CP
X=x,+Ax
For the Kalman filter, P is equal to the covariance of the estimation error.
Combine the X, 1in equation (3) with the Ax expression in equation (6) to obtain
Ko + AT = £ (010,00 + AAT+ KTy =y, = C(E = x,)] (7

Acta Chimica Slovaca, Vol .1, No. 1, 2008, 309 — 320



J. Voros et al., Parameter Estimation of Nonlinear Systems

312

Now choose x,(#) = X(t) so that Ax(#)=0 and Afc(t) =0. In other words, our linearization
trajectory xo(?) is equal to our linearized Kalman filter estimatex(¢). Then the nominal
measurement expression in equation (3) becomes

Vo =h(x,v,,t) = h(X,v,,1) (8)
and equation (7) becomes

X = f(Ru,w,,t)+ K[y —h(%,v,,0)] 9)
This is equivalent to the linearized Kalman filter except that we have chosenx, = x, and we

have rearranged the equations to obtain x directly. The Kalman gain K is the same as that
presented in equation (6). But this formulation inputs the measurement y directly, and outputs
the state estimate x directly. The EKF can be summarized as follows:

1. The system equations are given as:

x=f(x,u,wt)

v =h(x,v,t) (10)
w~(0,0)

v~ (0,R)

2. Compute the following partial derivative matrices evaluated at the current state

estimate:
4=
Ox|;
L =9
ow|, (an
c o
Ox|;
m="
ov|;

3. Compute the following matrices:

0=LoL

- (12)
R=MRM"

4. Execute the following Kalman filter equations:

% = f (&1, W, 1)+ K[y = h(%,v,,0)]
K=PC'R" (13)
P=AP+PA" +O-PC'R™'CP

where the nominal noise values are given as wy= 0 and vy= 0.
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Mathematical modelling

Interacting tank-in-series process

Consider the interacting tank-in-series process (Mikles et al. 2007) shown in Fig. 1.

The process input variable is the flow rate gy.

—l %

Y P SN

qp qn
Fig.1. An interacting tank-in-series process.

The process state variables are heights of liquid in tanks 4;, 4,. Assuming that liquid
density, F; and F, are constant, mass balance for the process yields

F

1 di =40~ 4 (14)
dh
2d_t2=‘]1_% (15)

where F is cross-sectional area of the first tank, F, is cross-sectional area of the second tank,
h; is height of liquid in the first tank, 4, is height of liquid in the second tank, g is inlet
volumetric flow rate to the first tank, ¢; is inlet volumetric flow rate to the second tank, ¢, is
outlet volumetric flow rate from the second tank.

Inlet flow rate gy is independent of tank states whereas ¢; depends on the difference

between liquid heights

q1 =k11\/h1_h2 (16)

where k;; is valve constant.

Outlet flow rate g» depends on liquid height in the second tank

) zkzzx/z (17)

where k> is valve constant.

Substituting ¢; from equation (16) and ¢, from (17) into (14) and (15) we get
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dahy _qy k.

hy = hy

d F F (18)
dhy _ ky, Ky
—==—\h —hy, ——=|h

da FY' 7 F Jh

with arbitrary initial conditions

hl (0) = th (19)

hy (0) = Iy

Assume that parameters k;; and k;, are unknown. To estimate constants k;; and k., two more

equations are needed

dk

—=0 ki, (0) :klol

dZ’ (20)
7;2 =0 ky, (0) = kgz

Equations (18) and (20) are now nonlinear system model for parameters estimation.

According to (11)

11 11 hl_hz 0
2F A, — h, 2F A, — h, £
A= by ki bbb, 1)
2F Nk —hy,  2FJh —h, 2Fh, ) F,
0 0 0 0
0 0 0 0
1000
C= (22)
0100

Parameters of the interacting tank-in-series process are shown on Table 1.

Table 1. Parameters of the interacting tank-in-series process.

Qos/ (m*h™") 1

ki /(m>2h) 0.8
ke /(m**h) 1.5
F,/(m?) 0.8
F, / (m?) 0.8
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Continuous stirred-tank reactor

We consider CSTR (Mikles et al. 2007) with a simple exothermal reaction A—B (Fig. 2.).

vy
(i
5
v
Cl,_.'l ﬁc
. (= a A
~
N ~/
—_— 5 __
5 2

Fig.2. A nonisothermal CSTR.

For the development of a mathematical model of the CSTR, the following assumptions
are made: neglected heat capacity of inner walls of the reactor, constant density and specific
heat capacity of liquid, constant reactor volume, constant overall heat transfer coefficient, and
constant and equal input and output volumetric flow rates. As the reactor is well-mixed, the
outlet stream concentration and temperature are identical with those in the tank.

A mass balance of component A can be expressed as

dc
VTtA:qCAV —qc, —Vr(cy,9) (23)

where V' is reactor volume, c, is molar concentration of A in the outlet stream, ¢ is volumetric
flow rate of reaction mixture, ¢4y is molar concentration of A in the inlet stream, r is rate of
reaction, 4 is temperature of reaction mixture.

The rate of reaction is strong function of concentration and temperature (Arrhenius law)

E
r(cy, N =ke, =kye Roc, (24)

where ky is frequency factor, E is activation energy.

Heat balance gives

d9
Viep—-= qpepy —qpepd—aF (8- 39¢) +V(=4H)r(c 4, 9) (25)
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where p is liquid density, cp is liquid specific heat capacity, $, is temperature in the inlet
stream, o is overall heat transfer coefficient, F' is heat transfer area, §. is cooling
temperature, 4H is heat of reaction.

Initial conditions are

c (0)=cy (26)
H0) =9,

Assume that parameter 4 and k is unknown. To estimate frequency factor &y one more

equation is needed

dk, _
dt

Equations (23), (25) and (27) are now nonlinear system model for parameters estimation.

0 k,(0)=k® 27)

According to (11)

a, dyp dg

A=|ay a, ay (28)
0O 0 O
Cc=(1 0 0 (29)
where
g A T8 g
q r ¢, gk,e -%
ay =———kee * a, =——* 92 a, =—C,e ’
V RS
P A
_koe P (-AH)c, 4 - 4 aF  k,ge °(-AH)c¢,
21 oc, 2 v Vpe, 92/001)
-&
e Y(-AH)¢,
Ay ==~
PCp

Parameters of the reaction and reactor are shown on Table 2.

Table 2. Parameters of the reaction and reactor.

cays/ (kmol m™) 1.2 g/ (m’ min™) 0.2
cp/ (KT kg' K 4.05 R/(KJkmol' K" 8314
E /(kJ kmol ™) 107280 a/(kIm?min' K') 41.2
F/(m’%) 6.08 I/ (K) 318
ko/ (min™") 7.93¢l15 9./ (K) 313
V/(m®) 1.7 / (kg m”) 998
AH / (kJ kmol™) -150000
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Results and Discussion

For the tank-in-series process parameters estimation simulation, the following values
were tracked: go(2) = 1 m’.h”" for t <0 h and qo(t) = 1.1 m’.h”" for t > 0 h, initial condition for
the states is taken as [2.000 0.4444] and for estimated values of states /gn, /€22 are [1 1]. Fig.

3.,4,5,6 show the estimation results for tank-in-series process.

2.45

hl/m
N
N

1
5 10 15 20 25 30
t/h

Fig.3. Simulation (-) and estimation (--) of the height of liquid in the first tank.

0.75

1
5 10 15 20 25 30
t/h

Fig.4. Simulation (-) and estimation (--) of the height of liquid in the second tank.
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5/2,
k,,/(m®2h)

5/2,
K, ,/(m®2h)

can(t) = 1.2 kmol.m™ for t <0 h and cyp(?) = 1.1 kmol.m™ for t > 0 h, initial condition for the

states is taken as [0.9923 320.068] and for estimated value of state /éo is [7el4]. Fig. 7.8,9
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Fig.5. Estimation of the k;; constant.
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Fig.6. Estimation of the k», constant.

For the CSTR parameters estimation simulation, the following values were tracked:

show the estimation results for CSTR.
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Fig.7. Simulation (-) and estimation (--) of the molar concentration of A in the outlet
stream.
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Fig.8. Estimation of the temperature of reaction mixture.
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k0.1014/ mint
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Fig.9. Estimation of the frequency factor .
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The estimation of parameters and states is carried out in presence of noise. From the
results on Fig. 3,4,5,6,7,8,9 it is observed that extended Kalman filter algorithm gives very
high accuracy of parameters estimation and for flow processes parameters estimation can be
successfully used. Parameters estimation converges in minimum time for most of the initial
values. For the purpose of estimation is needed to provide a measurement such that process

observability conditions are held.
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