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Abstract 

In this work, a continuous-time extended Kalman filter (EKF) is presented, which allows the 

parameters of nonlinear systems to be estimated. The idea of the extended Kalman filter is 

extending the linearized Kalman filter to directly estimate the states of a nonlinear system and 

linearizing the nonlinear system around the Kalman filter estimate. Two mathematical 

models, an interacting tank-in-series process and continuous stirred-tank reactor (CSTR), are 

introduced. EKF is used to estimate constants k11 and k22 for interacting tank-in-series process 

and temperature of reaction mixture ϑ  and frequency factor k0 for CSTR. 
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Introduction 

State estimation is applicable to virtually all areas of engineering and science. Any discipline 

that is concerned with the mathematical modelling of its systems is a likely (perhaps 

inevitable) candidate for state estimation. State-space theory and state estimation was initially 

developed in the 1950s and 1960s, and since then there have been a huge number of 

applications.(Simon 2006) 

State observation for linear differential-algebraic equations (DAEs) has been studied 

by, for example, (Nikoukhah et al. 1992) using the Kalman filter. Non-linear DAEs are 

considered in e.g. (Becerra et al. 2001), where an extension of the extended Kalman filter is 

used and also by (Zimmer and Meier 1997), where the original DAE model is rewritten as an 

ODE on a restricted manifold (Rheinboldt 1984). Other works include (Boutayeb and 

Darouach 1995) that uses linearization techniques and (Kidane et al. 2003) that, in addition to 

a linearization procedure, employs index reduction techniques to cope with high-index 
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models. In (Kaprielian and Turi 1992), a Lyapunov based approach is used in the design of 

the observer. In (Åslund et al. 2006) the state estimation for semi-explicit differential-

algebraic models has been studied where the proposed observer is formulated as a differential-

algebraic equation (DAE). Conditions on the design parameters in the observer are derived 

such that the index of the observer is 1. Linearization of the error dynamics is used to obtain 

local stability of the estimator error dynamics. This provides one possibility to design the 

observer by studying the linearized system and using available linear DAE techniques. 

Model estimation using fast orthogonal search (FOS) is presented in (Eklund et al. 

2007). FOS is an efficient and effective method of system identification that is able to find 

parsimonious models of systems from large numbers of candidate basis functions. The 

method is related to, but more efficient than, a technique proposed by Desrochers for 

approximating static nonlinear systems, where, amongst various differences, the 

computational cost is proportional to the square of the number of candidates, whereas in FOS 

it depends linearly on the number. 

In this paper, extended Kalman filter is presented which allows the parameters of 

processes to be estimated. We will extend the linearized Kalman filter to directly estimate the 

states of a nonlinear system and linearize the nonlinear system around the Kalman filter 

estimate. EKF will be used to estimate unknown parameters of tank-in-series process and 

CSTR. 

Theoretical 

The continuous-time extended Kalman filter 

Consider the following general nonlinear system model (Simon 2006): 
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The noise processes w and v are white, zero-mean, uncorrelated, and have known covariance 

matrices Q and R. The system equation f(·) and the measurement equation h(·) are nonlinear 

functions. We will use Taylor series to expand these equations around a nominal control u0, 

nominal state x0, nominal output y0, and nominal noise values w0 and v0. The Taylor series 

linearization of equation (1) gives 
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The definitions of the partial derivative matrices A, B, C, L, and M are apparent from the 

above equations. Now we define the nominal system trajectory as 
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We define the deviation of the true state derivative from the nominal state derivative, and the 

deviation of the true measurement from the nominal measurement, as follows: 
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With these definitions equation (2) becomes 
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The inputs to the filter consist of Δy, which is the difference between the actual measurement 

y and the nominal measurement y0. The Δx that is output from the Kalman filter is an estimate 

of the difference between the actual state x and the nominal state x0. The Kalman filter 

equations for the linearized Kalman filter are 
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For the Kalman filter, P is equal to the covariance of the estimation error. 

Combine the 0x& in equation (3) with the x&̂Δ expression in equation (6) to obtain 

 )]ˆ([ˆ),,,(ˆ 000000 xxCyyKxAtwuxfxx −−−+Δ+=Δ+ &&     (7) 
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Now choose )(ˆ)(0 txtx =  so that 0)(ˆ =Δ tx  and 0)(ˆ =Δ tx& . In other words, our linearization 

trajectory x0(t) is equal to our linearized Kalman filter estimate )(ˆ tx . Then the nominal 

measurement expression in equation (3) becomes 

 ),,ˆ(),,( 0000 tvxhtvxhy ==         (8) 

and equation (7) becomes 

 )],,ˆ([),,,ˆ(ˆ 00 tvxhyKtwuxfx −+=&        (9) 

This is equivalent to the linearized Kalman filter except that we have chosen xx ˆ0 = , and we 

have rearranged the equations to obtain x̂  directly. The Kalman gain K is the same as that 

presented in equation (6). But this formulation inputs the measurement y directly, and outputs 

the state estimate x̂  directly. The EKF can be summarized as follows: 

1. The system equations are given as:  
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2. Compute the following partial derivative matrices evaluated at the current state 

estimate: 
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3. Compute the following matrices: 
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4. Execute the following Kalman filter equations:  

 

CPRPCQPAAPP

RPCK

tvxhyKtwuxfx

TT

T

1

1

00

~~

~
)],,ˆ([),,,ˆ(ˆ

−

−

−++=

=

−+=

&

&

      (13) 

where the nominal noise values are given as w0 = 0 and v0 = 0. 



J. Vöröš et al., Parameter Estimation of Nonlinear Systems 
313 

Acta Chimica Slovaca, Vol .1, No. 1, 2008, 309 – 320 

Mathematical modelling 

Interacting tank-in-series process 

Consider the interacting tank-in-series process (Mikleš et al. 2007) shown in Fig. 1. 

The process input variable is the flow rate q0. 

 
Fig.1. An interacting tank-in-series process. 

The process state variables are heights of liquid in tanks h1, h2. Assuming that liquid 

density, F1 and F2 are constant, mass balance for the process yields 

 10
1

1 qq
dt

dh
F −=          (14) 

 21
2

2 qq
dt

dhF −=          (15) 

where F1 is cross-sectional area of the first tank, F2 is cross-sectional area of the second tank, 

h1 is height of liquid in the first tank, h2 is height of liquid in the second tank, q0 is inlet 

volumetric flow rate to the first tank, q1 is inlet volumetric flow rate to the second tank, q2 is 

outlet volumetric flow rate from the second tank. 

Inlet flow rate q0 is independent of tank states whereas q1 depends on the difference 

between liquid heights 

 21111 hhkq −=          (16) 

where k11 is valve constant. 

Outlet flow rate q2 depends on liquid height in the second tank 

 

 2222 hkq =           (17) 

where k22 is valve constant. 

Substituting q1 from equation (16) and q2 from (17) into (14) and (15) we get  
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with arbitrary initial conditions 
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Assume that parameters k11 and k22 are unknown. To estimate constants k11 and k22, two more 

equations are needed 
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Equations (18) and (20) are now nonlinear system model for parameters estimation. 

According to (11) 
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Parameters of the interacting tank-in-series process are shown on Table 1.  

 

Table 1. Parameters of the interacting tank-in-series process. 

q0S / (m3.h-1) 1 

k11 / (m5/2.h) 0.8 

k22 / (m5/2.h) 1.5 

F1 / (m2) 0.8 

F2 / (m2) 0.8 
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Continuous stirred-tank reactor 

We consider CSTR (Mikleš et al. 2007) with a simple exothermal reaction A→B (Fig. 2.). 

 

 
Fig.2. A nonisothermal CSTR. 

For the development of a mathematical model of the CSTR, the following assumptions 

are made: neglected heat capacity of inner walls of the reactor, constant density and specific 

heat capacity of liquid, constant reactor volume, constant overall heat transfer coefficient, and 

constant and equal input and output volumetric flow rates. As the reactor is well-mixed, the 

outlet stream concentration and temperature are identical with those in the tank. 

A mass balance of component A can be expressed as 

 ),( ϑAAAV
A cVrqcqc

dt
dc

V −−=        (23) 

where V is reactor volume, cA is molar concentration of A in the outlet stream, q is volumetric 

flow rate of reaction mixture, cAV is molar concentration of A in the inlet stream, r is rate of 

reaction, ϑ  is temperature of reaction mixture. 

The rate of reaction is strong function of concentration and temperature (Arrhenius law) 

 A
R
E

AA cekkccr ϑϑ
−

== 0),(         (24) 

where k0 is frequency factor, E is activation energy. 

Heat balance gives 

 ),()()( ϑΔϑϑαϑρϑρϑρ ACPVPP crHVFcqcq
dt
dcV −+−−−=     (25) 
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where ρ is liquid density, cP is liquid specific heat capacity, Vϑ  is temperature in the inlet 

stream, α is overall heat transfer coefficient, F is heat transfer area, Cϑ  is cooling 

temperature, ΔH is heat of reaction. 

Initial conditions are 
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          (26) 

Assume that parameter ϑ and k0 is unknown. To estimate frequency factor k0 one more 

equation is needed 
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00

0 )0(0 kk
dt
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==         (27) 

Equations (23), (25) and (27) are now nonlinear system model for parameters estimation. 

According to (11) 
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Parameters of the reaction and reactor are shown on Table 2. 

Table 2. Parameters of the reaction and reactor. 

cAVS / (kmol m-3) 1.2 

cP / (kJ kg-1 K-1) 4.05 

E / (kJ kmol-1) 107280 

F / (m2) 6.08 

k0 / (min-1) 7.93e15 

V / (m3) 1.7 

ΔH / (kJ kmol-1) -150000 

q / (m3 min-1) 0.2 

R / (kJ kmol-1 K-1) 8.314 

α / (kJ m-2 min-1 K-1) 41.2 

ϑC / (K) 318 

ϑv / (K) 313 

ρ / (kg m-3) 998 
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Results and Discussion 

For the tank-in-series process parameters estimation simulation, the following values 

were tracked: q0(t) = 1 m3.h-1 for t < 0 h and q0(t) = 1.1 m3.h-1 for t ≥ 0 h, initial condition for 

the states is taken as [2.000 0.4444] and for estimated values of states 2211
ˆ,ˆ kk  are [1 1]. Fig. 

3,4,5,6 show the estimation results for tank-in-series process. 
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Fig.3. Simulation (-) and estimation (--) of the height of liquid in the first tank.  
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Fig.4. Simulation (-) and estimation (--) of the height of liquid in the second tank.  
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Fig.5. Estimation of the k11 constant. 
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Fig.6. Estimation of the k22 constant. 

For the CSTR parameters estimation simulation, the following values were tracked: 

cAV(t) = 1.2 kmol.m-3 for t < 0 h and cAV(t) = 1.1 kmol.m-3 for t ≥ 0 h, initial condition for the 

states is taken as [0.9923 320.068] and for estimated value of state 0k̂  is [7e14]. Fig. 7,8,9 

show the estimation results for CSTR. 
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Fig.7. Simulation (-) and estimation (--) of the molar concentration of A in the outlet 

stream. 
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Fig.8. Estimation of the temperature of reaction mixture. 
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Fig.9. Estimation of the frequency factor . 
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The estimation of parameters and states is carried out in presence of noise. From the 

results on Fig. 3,4,5,6,7,8,9 it is observed that extended Kalman filter algorithm gives very 

high accuracy of parameters estimation and for flow processes parameters estimation can be 

successfully used. Parameters estimation converges in minimum time for most of the initial 

values. For the purpose of estimation is needed to provide a measurement such that process 

observability conditions are held. 
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