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Abstract 

This paper deals with intelligent controller design using artificial neural networks (ANN) in 

the role of feedback controllers. Neural controllers are built up and trained as inverse neural 

process models. Their performance and robustness are, gradually, improved and augmented 

by introducing, first, an adaptive simple integrator and, then, a controller with fuzzy integrator 

part. The proposed ANN control system performance is demonstrated a non-linear continuous 

biochemical process model with simulated uncertainties. MATLAB programme package 

environment has been used to build up and train the ANN feedback controllers. 
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Introduction 

Non-linear and the time-varying behavior is the characteristic attribute for many industrially 

important fermentation processes. Moreover, as the cultivation medium consists of living 

microorganisms, the application of standard controllers as well as modern control techniques, 

is embarrassed by overcoming such effects as substrate inhibition, catabolite repression, 

product inhibition, glucose effect and so on. In order to eliminate these negative effects, 

maintaining the key variables of the process in desired range is the main goal of control. 

Conventional methods of controller design require detailed information about the controlled 

system, especially time constants, time delays and steady-state gains. The non-linearity and 

time-dependence variation of plant parameters can cause incorrect identification of system as 

well as controller parameters. This parameters mismatch usually leads to degradation of 

control performance resulting in oscillations, overshoot or long regulation times. An 

alternative way of process modeling is to utilize an artificial neural network (ANN) as a 
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black-box model of the process. It has been shown that any function can be approximated as 

precisely as required by a neural network having enough neurons, at least one hidden layer, 

and an appropriate set of weights using data samples, since they are universal function 

approximators (Hornik et al. 1989). Neural black-box models have been successfully used in 

chemical and biochemical applications (Thibault 1990). Control system based on inverse 

neural model and augmented by robust term has been applied to control dissolved oxygen 

concentration in laboratory fermenter (Andrášik 2003). 

Artificial neural networks have good general approximation capabilities for modeling 

complex non-linear processes because they are able to match the input/output behavior of any 

continuous non-linear system (Omidvar and Elliott 1997). Many results, well-known in 

modeling or other scientific fields, have been re-discovered in neural networks context. The 

use of ANNs in identification and control, which has been recognized as an effective tool for 

handling difficult non-linear problems, has recently attracted a great deal of attention, because 

ANN appear to provide a convenient means for modeling complicated non-linear processes at 

low cost. 

A neural network can be trained to develop an inverse model of the plant. The network 

input is the process output, and the network output is the corresponding process input. 

Typically, the inverse model is a steady-state/static model, which can be used for feedforward 

control (Morari and Zafiriou 1989). Obviously, an inverse model exists only when the process 

behaves monotonically as a „forward“ function at steady state. If not, this approach is 

inapplicable. In principle, an inverse neural network model can learn the inverse dynamics 

under some restrictions (e.g. minimum phase and causality are required). Then, the inverse 

model is arranged in a way similar to an internal model control (IMC) structure (Ramasamy et 

al. 1995). 

In this paper, neural network based feedback controllers are designed and trained off-

line as inverse models of the plant controlled. However, the control behaviour is deteriorated 

in case of perturbation. The reason is that for a stable and strictly proper system, the simple 

inverse neural model based controller (INMC) exhibits a PD-like behaviour. To achieve offset 

free control responses, this controller has to be augmented by an adaptive integral term, which 

modifies the neural bias at output layer. As the simulation experiments confirm, the result is a 

PID-like control with robust performance.  

Another way to improve INMC is to extend the feedback by a full integral part with fuzzy 

tuning. The resulting control structure is more sophisticated, however, it shows much 

improved behaviour in presence of unmeasured disturbances and unpredictable uncertainties. 
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Robustness of the proposed strategies is tested in simulation experiments where a continuous 

flow stirred biochemical reactor is chosen as a case study. The main goal of the resulting 

control system is to maintain a desired profile of dissolved oxygen concentration in the 

fermenter by manipulating the dilution rate. Simulation results demonstrate the usefulness of 

the fuzzy integrating term and the robustness of the proposed control system. 

Theoretical 

Inverse neural models 

Application of neural networks in role of controller is mostly connected with inverse 

neural models (Mészáros et al. 1997), (Andrášik et al. 2003). In this case, a neural network is 

trained in such a way that it represents inverse dynamics of the controlled system. Then, the 

proposed system uses the inverse neural model as a direct feedback controller, as it is depicted 

in Fig.1.  

  
Fig.1. The simple inverse neural model based control system structure (INMC). 

 The neural model in a role of controller has to be trained accurately to avoid model 

mismatch problems. However, the well trained direct neural controller gives satisfactory and 

offset-free results for the nominal plant only. In practice, it is not effective to train the ANN 

as long as to achieve the exact inverse dynamics because achieving zero training error may be 

a strongly time-consuming process. Moreover, most of the plants in chemical or biochemical 

technologies exhibit strongly non-linear characteristics and may be corrupted with 

unpredictable disturbances and parameter uncertainties. As a result, the nominal performance 

cannot be achieved and some adaptation of the pure inverse controller is required. There are 

different ways how to make the neural controller adaptive, but the methods to be preferred are 

those, which adjust only few parameters. Then, the neural model is usually trained off-line 

and only the required parameters are tuned on-line (Mészáros et al. 2002). 
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A different method of neural controller adaptation is through additive adapter 

adjusting the output from neural network through bias neuron (Bhat and McAvoy 1990). In 

comparison with other adaptive methods based on on-line network training, these concepts 

require low computational time and, therefore, they can be used in real-time applications. 

The above scheme follows from the IMC concept. IMC schemes have been proposed 

for ANN models (Demuth and Beale 1994), but the model dynamics and the model inverse 

dynamics of the plant were identified with two separate ANN models that did not match and, 

therefore, could not account for modeling errors. 

Robust neural controller 

In practice, especially for discrete-type dynamic models, the inverse model may not be 

able to learn precisely the desired inverse dynamics. In many cases, a process inverse is in 

fact non-causal even if the process behaves monotonically, as mentioned above. The non-

causality (or improperness) of a process inverse can result from dead time or discretization of 

a continuous process in a sampled-data system. Even if an inverse model does exist, the use of 

a dynamic inverse model as a feedback controller will not result in a strictly proper control 

system. 

The ANN model in role of controller has to be trained precisely to avoid model 

mismatch problems. The well trained direct feedback neural controller gives satisfactory and 

offset-free results for the nominal system. However, most of the plants in chemical or 

biochemical technologies exhibit strongly non-linear characteristics and may be corrupted 

with unpredictable disturbances and parameter uncertainties. The idea of adaptation of inverse 

neural model into exact inverse system dynamics, comes out from adjusting the input into 

threshold (bias) neuron. Assuming that the cause of deviation in the process output from the 

set point is the improper value of the bias neuron input, it may be surmised that by properly 

adjusting the bias neuron, the set point error can be eliminated. It has been shown that 

adaptation of the bias on the network output layer only, is sufficient. The proper signal for 

adjustment is of course the integral of the set point error. As long as a finite set point error 

exists, the output of the adapter, a pure integral controller, will continue to change and the 

neural network controller will undergo continuing adjustment. The adjustment will cause the 

error to diminish over time and when the set point error vanishes, the adjustment will cease 

and the exact inverse of the forward model is found. The exact adapter equation is 

 ( )[ ]∑ −+= yyBB *
0 β         (1) 
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where BB0 is the initial value of the bias input (unity), y* is the set point, and y is the 

process output. The term β is an adaptation gain which may vary in the range (-∞,∞). The 

actual range for a given application may be limited by stability considerations. A value of β = 

0 means no adaptation. For some applications β may be positive, while for others it may be 

negative. As β is increased (or reduced) beyond a certain value, oscillations and instability 

occur. Proper values of β may be found by trial and error. The control structure described can 

be seen in Fig.2. 

 

  
Fig.2. The robust neural control system structure (RINMC). 

Fuzzy-neural controller 

In (Bhat and McAvoy 1990) it was shown, that presence of some integration term is 

inevitable in a neural control loop. However, even involving this, the control performance 

may turn up unsatisfactory in terms of regulation time and overshoot. It has been shown that 

these negative effects may result from self-characteristic of adapter (pure integrator) and 

incorrect timing of adaptation. In effort to improve the pure inverse controller performance, 

the simple integrator is replaced by a fuzzy one, resulting in the structure shown in Fig.3. 
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Fig.3. The fuzzy-neural control system structure (FRINMC). 

 
Then the manipulated variable is computed according to the equation 

 ( ) ( deefyyfu FUZZYNET ,,* += )

)]

       (2) 

where fNET(y*,y) is a nonlinear function of reference, y*, and system output, y, which 

represents the inverse dynamics neural model. The term fFUZZY(e,de) is a fuzzy integrator 

represented by nonlinear function of control error, e, and its derivation, de, as follows 

        (3) ( ) ( ) ( )( ) ([∫=
t

FUZZY dttetdeteIdeef
0

.,,

where the element I(e(t),de(t)) corresponds to fuzzy controller output with inputs e and 

de. Assuming (2) to be the control law of a parallel PID controller, then the term fNET(y*,y) 

can be considered as a PD component and the term fFUZZY(e,de) as the I component of a PID 

controller. Moreover, it is evident from (3), that the „speed“ of integral term can be easily 

adjusted through I parameter of the fuzzy integrator. 

Following control theory, the inversion of a stable invertible system leads to a system 

with proportional-derivative properties. Previous experiments have confirmed similarity of 

inverse neural model and PD controller e.g. existence of offset. Let the control problem be 

divided into two tasks. First, if the inverse neural model is utilized as a PD controller then we 

can suppose that the neural controller drives the system output close to the reference value. In 

the second part of regulation, when the offset appears, the task of the fuzzy tuner is to adjust 

I-parameter of integral term in order to remove offset. Thus, the main task of the resulting 

fuzzy robust inverse neural model based controller (FRINMC) is the correct timing of 

adaptation of the overall control system with respect to the value of set-point error and its 

derivation. 

The rules and membership functions of fuzzy controller were designed in order to 

satisfy the following two principles: 

1. Adaptation speed has to be minimal after step change of set-point value (minimal value I) 

2. As offset appears, adaptation speed reaches maximal value (maximal value I) 

The fuzzy system satisfying the above two principles, can be defined as follows: 

Input variables: e - set-point error; de – derivation of set-point error 

Output variable: I – integration parameter 

Rule base: 

If e is zero and de is zero, then I is maximal 
If e is zero and de is non-zero, then I is middle 
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If e is non-zero a de is zero, then I is middle 
If e is non-zero a de is non-zero, then I is minimal 

Seven fuzzy sets are defined: two for variable e, two for variable de and three for 

variable I. In fact, defining five membership functions (Fig. 4) is enough because fuzzy set 

non-zero is the complement of fuzzy set zero for both e and de variables. Gaussian MF were 

chosen for input variables, triangular and trapezoid MF define membership to output fuzzy 

set. The output surface of fuzzy controller is depicted in Fig. 5. 

 

 

  
 

Fig.4. Membership functions. 
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Fig.5. Output surface of fuzzy controller. 

Experimental 

Case Study:  Non-linear bioprocess model 

The non-linear model describing the response of Saccharomyces cerevisiae, known as 

baker’s yeast, has been used for the non-linear process control  simulation. This mathematical 

model, adopted in dynamical structure from (Mészáros et al. 1995) is based on limited 

oxidation capacity of yeast leading to a switch-over from oxidative to oxido-reductive 

metabolism.  

Regarding the law of the conservation of mass, the model for continuous process can 

be expressed by the following set of ordinary differential equations: 

 

cell mass concentration 

 X
V
qX

dt
dX

l

−= μ           (4) 

where X is biomass concentration, μ is specific biomass growth rate, q is flow rate, and Vl is 

liquid phase volume. 

substrate concentration 

 ( ) XQSS
V
q

dt
dS

sin
l

−−=         (5) 
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where S is substrate concentration, Sin is input substrate concentration, and  Qs is substrate 

specific consumption. 

ethanol (product) concentration 

 ( ) ( XQQEE
V
q

dt
dE

eprein
l

−+−= , )        (6) 

where E is ethanol concentration, Ein is input ethanol concentration, and Qe is ethanol specific 

consumption. 

carbon dioxide concentration 

 ( ) XQCCD
dt
dC

cing −−=          (7) 

where C is carbon dioxide concentration, Dg is gas phase dilution rate, Cin is input carbon 

dioxide concentration, and Qc is carbon dioxide specific consumption. 

dissolved oxygen concentration 

 ( ) XQNaOO
V
q

dt
dO

oin
l

−+−=        (8) 

where O is dissolved oxygen concentration, Oin is input dissolved oxygen concentration, Na is 

oxygen transfer, and Qo is oxygen specific consumption. 

gas phase oxygen concentration 

 ( )
g

l
ing V

V
NaGGD

dt
dG

−−=         (9) 

where G is gas phase oxygen concentration, Dg is gas phase dilution rate, Gin is input gas 

phase oxygen concentration, and Vg is gas phase volume. 

 

The mathematical description of the kinetic model mechanisms is arranged in Table 1,  
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Table 1. Kinetic model mechanisms of the bioprocess. 

Mechanism Description 

Glucose uptake Sk
SQQ

s
ss +

= max,  

Oxidation capacity Ok
OQQ

o
oo +

= max,lim,  

Oxidative glucose metabolism 
⎩
⎨
⎧

=
lim,

, min
oos

s
oxs QY

Q
Q  

Reductive glucose metabolism oxssreds QQQ ,, −=  

Ethanol uptake Sk
k

Ek
EQQ

I

I

e
ee ++

= max,  

Oxidative ethanol metabolism ( )⎩
⎨
⎧

−
=

oesooxso

e
oxe YYQQ

Q
Q

,lim,
, min  

Ethanol production redsseprs QYQ ,, =  

Growth eexreds
red

sxoxs
ox

sx QYQYQY ++= ,,μ  

Carbon dioxide production eecreds
red

scoxs
ox

scc QYQYQYQ ++= ,,  

Oxygen consumption oxeeooxssoo QYQYQ ,, +=  

Oxygen transfer ⎟
⎠
⎞

⎜
⎝
⎛ −= O

m
GakNa L  

Maximum consumption rates ( )max.max,
max, 1

iic
p

i
i

i QfQ
Tdt

dQ
−=  

ESk
ES

Ok
Of

mo
oc ++

+
+

=
2

2  

Sk
Sf

n
sc +
=

Ok
O

Sk
k

Ek
Ef

oI

I

e
ec +++
=  

where induction or repression factors 
are as follows 

 

where k is saturation constant, Yij is yield of component j on i, kL.a is volumetric mass transfer 

coefficient based on liquid volume, T is time constant for the induction of the production of 

consumption capacity, m is gas liquid distribution coefficient, f is induction or repression 

factor, and subscript and supercsript c is carbon dioxide,e is ethanol, g is gas phase, i is 

component i, in is input, I is inhibition, l is liquid phase, lim is limited capacity, max is 

maximum, o is oxygen, ox is oxidative, and red is reductive.  

The main goal is to maintain a desired profile of dissolved oxygen concentration (DO) 

in the fermenter by manipulating the process inlet air flow rate (Dg).  
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Results and Discussion 

To demonstrate the robust performance, first, for  the robust INMC controller, and, then, for 

fuzzy-neural controller, parameter perturbation is applied to the process as variations in inlet 

substrate concentration, Sin, with a deviation of ±20% from the mean value.  

Two-layer feedforward neural network of structure {4,3,1} (4 input neurons, 3 hidden 

neurons with sigmoidal activation functions, 1 output neuron with linear activation function) 

is designed and trained off-line to get ANN model of plant inverse dynamics on a training set 

of data, containing 1500 pairs of samples, taken in periods of 0.5h. For network training, a 

combined method of back-propagation and conjugate gradients is used. The input vector is 

fed by values of DO(t+1), DO(t), DO(t-1), DO(t-2), the output vector contains values of 

Dg(t). Training was finished after 1000 iteration runs and training error had gone beyond 

4.10-4. In Fig.6, we can find the nominal regulator performance in cases of nominal and 

perturbed plant control. Parameter perturbation in extent of ±20% over the nominal value has 

been applied onto inlet substrate concentration. The same system was controlled by the 

controller, augmented by robust term (RINMC). The influence of adaptation gain, β, is 

evaluated in Fig.7. A comparison of performance of the three new proposed controllers is 

given for the same plant in Fig.8. The simulation experiments confirm the theoretical 

expectations as to increasing control system robustness and disturbance rejection abilities in  

cases of RINMC and FRINMC.  
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Fig.6. INMC performance for fermenter control. 
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Fig.7. RINMC performance for fermenter control. 
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Fig.8. Comparison of INMC, RINMC and FRINMC performance in fermenter control. 

It has been tested and confirmed that the proposed controllers are suitable to control non-

linear fermentation plants with promissing results. The nominal performance of the inverse 

neural model based regulators (INMC) has been demonstrated on  biochemical process 
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control with satisfactory results. However, the control behaviour was deteriorated in case of 

perturbation. This fact has comfirmed the PD-like behaviour of the INMC structure.  

To overcome this, INMC was augmented by an adaptive integral term, resulting in a 

more robust, PID-like control structure (RINMC). Simulation experiments on non-linear 

perturbed systems have approved the increasing robustness in control performance. 

Eventually, INMC was extended by a full integral part with fuzzy tuning (FRINMC). The 

resulting control structure, according to simulation tests, has shown much improved 

behaviour in respect of elimination of unmeasured disturbances and unpredictable system 

uncertainties.  
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